alfred-agent-example / retriever.py
benjosaur's picture
Complete up to external env config
ce1c576
# Implements retrieval functions to support knowledge access.
import datasets
from llama_index.core.schema import Document
from llama_index.retrievers.bm25 import BM25Retriever
# Load dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
# Convert dataset entries into Document objects
docs = [
Document(
text="\n".join(
[
f"Name: {guest['name']}",
f"Relation: {guest['relation']}",
f"Description: {guest['description']}",
f"Email: {guest['email']}",
]
),
metadata={"name": guest["name"]},
)
for guest in guest_dataset
]
bm25_retriever = BM25Retriever.from_defaults(nodes=docs)
def guest_info_retriever(query: str) -> str:
"""Retrieves detailed info about gala guests based on their name or relation"""
results = bm25_retriever.retrieve(query)
if results:
return "\n\n".join([doc.text for doc in results[:3]])
else:
return "No matching guest information found."