use minicpm llama3 model
Browse files
app.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
|
|
12 |
history: list[tuple[str, str]],
|
13 |
system_message,
|
14 |
max_tokens,
|
@@ -16,48 +19,47 @@ def respond(
|
|
16 |
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token = message.
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
-
|
48 |
-
gr.Textbox(
|
|
|
|
|
|
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import base64
|
4 |
|
5 |
+
# 更新为 MiniCPM-Llama3-V-2_5 模型
|
6 |
+
client = InferenceClient("openbmb/MiniCPM-Llama3-V-2_5")
|
|
|
|
|
7 |
|
8 |
+
def encode_image(image_path):
|
9 |
+
with open(image_path, "rb") as image_file:
|
10 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
11 |
|
12 |
def respond(
|
13 |
message,
|
14 |
+
image,
|
15 |
history: list[tuple[str, str]],
|
16 |
system_message,
|
17 |
max_tokens,
|
|
|
19 |
top_p,
|
20 |
):
|
21 |
messages = [{"role": "system", "content": system_message}]
|
|
|
22 |
for val in history:
|
23 |
if val[0]:
|
24 |
messages.append({"role": "user", "content": val[0]})
|
25 |
if val[1]:
|
26 |
messages.append({"role": "assistant", "content": val[1]})
|
27 |
+
|
28 |
+
# 处理图片输入
|
29 |
+
if image:
|
30 |
+
base64_image = encode_image(image.name)
|
31 |
+
image_message = f"<image>{base64_image}</image>"
|
32 |
+
message = image_message + "\n" + message
|
33 |
|
34 |
messages.append({"role": "user", "content": message})
|
35 |
+
|
36 |
response = ""
|
37 |
+
for message in client.text_generation(
|
38 |
+
prompt=f"{messages}",
|
39 |
+
max_new_tokens=max_tokens,
|
|
|
40 |
stream=True,
|
41 |
temperature=temperature,
|
42 |
top_p=top_p,
|
43 |
):
|
44 |
+
token = message.token.text
|
|
|
45 |
response += token
|
46 |
yield response
|
47 |
|
48 |
+
demo = gr.Interface(
|
|
|
|
|
|
|
49 |
respond,
|
50 |
+
inputs=[
|
51 |
+
gr.Textbox(label="Message"),
|
52 |
+
gr.Image(type="filepath", label="Upload Image"),
|
53 |
+
gr.State([]), # for history
|
54 |
+
gr.Textbox(value="You are a friendly AI assistant capable of understanding images and text.", label="System message"),
|
55 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
56 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
57 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
],
|
59 |
+
outputs=gr.Textbox(label="Response"),
|
60 |
+
title="MiniCPM-Llama3-V-2_5 Image and Text Chat",
|
61 |
+
description="Upload an image and ask questions about it, or just chat without an image."
|
62 |
)
|
63 |
|
|
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|