Spaces:
Sleeping
Sleeping
File size: 48,756 Bytes
402e29c 5045934 c854388 402e29c c854388 402e29c c854388 402e29c c854388 402e29c c854388 402e29c 9ce3669 402e29c 46aaa1b 402e29c 631ab16 402e29c 876c797 402e29c 5045934 c23a4ee 5045934 0fa0faa 5045934 0fa0faa 5045934 0fa0faa c23a4ee 0fa0faa c23a4ee 0fa0faa 5045934 0fa0faa 5045934 0fa0faa 5045934 8071c20 c23a4ee 402e29c 8071c20 402e29c c23a4ee 402e29c 876c797 402e29c c23a4ee 402e29c b28c06c 712b847 402e29c 712b847 402e29c 712b847 b28c06c 712b847 b28c06c 712b847 402e29c 712b847 b28c06c 402e29c c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 c854388 631ab16 402e29c aee753d 402e29c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 |
import streamlit as st
import xml.etree.ElementTree as ET
import pandas as pd
from io import StringIO
import folium
from streamlit_folium import st_folium
import unicodedata
import networkx as nx
import plotly.express as px
import plotly.graph_objects as go
# -------------------------------
# Authority Lists as XML Strings
# -------------------------------
materials_xml = """<?xml version="1.0" encoding="UTF-8"?>
<materials>
<material id="LAPIS">
<name>Lapis</name>
<name_en>Stone</name_en>
<description>Stone used as a durable medium for inscriptions and engravings.</description>
</material>
<material id="ARGENTUM">
<name>Argentum</name>
<name_en>Silver</name_en>
<description>Silver used in inscriptions, often for its lustrous appearance and value.</description>
</material>
<material id="PLUMBUM">
<name>Plumbum</name>
<name_en>Lead</name_en>
<description>Lead utilized in inscriptions, valued for its malleability and ease of engraving.</description>
</material>
<material id="OPUS_FIGLINAE">
<name>Opus Figlinae</name>
<name_en>Pottery</name_en>
<description>Pottery used as a medium for inscriptions, typically in the form of ceramic artifacts.</description>
</material>
</materials>
"""
places_xml = """<?xml version="1.0" encoding="UTF-8"?>
<places>
<place id="VIZE">
<name>Vize</name>
<geonamesLink>https://www.geonames.org/738154/vize.html</geonamesLink>
<pleiadesLink>https://pleiades.stoa.org/places/511190</pleiadesLink>
<latitude>40.6545</latitude>
<longitude>28.4078</longitude>
<description>Ancient city located in modern-day Turkey.</description>
</place>
<place id="PHILIPPI">
<name>Philippi</name>
<geonamesLink>https://www.geonames.org/734652/filippoi-philippi.html</geonamesLink>
<pleiadesLink>https://pleiades.stoa.org/places/501482</pleiadesLink>
<latitude>40.5044</latitude>
<longitude>24.9722</longitude>
<description>Ancient city in Macedonia, founded by Philip II of Macedon.</description>
</place>
<place id="AUGUSTA_TRAIANA">
<name>Augusta Traiana</name>
<geonamesLink>https://www.geonames.org/maps/google_42.4333_25.65.html</geonamesLink>
<pleiadesLink>https://pleiades.stoa.org/places/216731</pleiadesLink>
<latitude>42.4259</latitude>
<longitude>25.6272</longitude>
<description>Ancient Roman city, present-day Stara Zagora in Bulgaria.</description>
</place>
<place id="DYRRACHIUM">
<name>Dyrrachium</name>
<geonamesLink>https://www.geonames.org/3185728/durres.html</geonamesLink>
<pleiadesLink>https://pleiades.stoa.org/places/481818</pleiadesLink>
<latitude>41.3231</latitude>
<longitude>19.4417</longitude>
<description>Ancient city on the Adriatic coast, present-day Durrës in Albania.</description>
</place>
<place id="ANTISARA">
<name>Antisara</name>
<geonamesLink>https://www.geonames.org/736079/akra-kalamitsa.html</geonamesLink>
<pleiadesLink>https://pleiades.stoa.org/places/501351</pleiadesLink>
<latitude>39.5000</latitude>
<longitude>20.0000</longitude>
<description>Ancient settlement, exact modern location TBD.</description>
</place>
<place id="MACEDONIA">
<name>Macedonia</name>
<geonamesLink>-</geonamesLink>
<pleiadesLink>-</pleiadesLink>
<latitude>40.0000</latitude>
<longitude>22.0000</longitude>
<description>Historical region in Southeast Europe, encompassing parts of modern Greece, North Macedonia, and Bulgaria.</description>
</place>
</places>
"""
titles_xml = """<?xml version="1.0" encoding="UTF-8"?>
<emperorTitles>
<title id="IMPERATOR">
<name>Imperator</name>
<name_gr>Αυτοκράτορας</name_gr>
<abbreviation>Imp.</abbreviation>
<description>A title granted to a victorious general, later adopted as a formal title by Roman emperors.</description>
</title>
<title id="CAESAR">
<name>Caesar</name>
<name_gr>Καῖσαρ</name_gr>
<abbreviation>Caes.</abbreviation>
<description>A title used by Roman emperors, originally the family name of Julius Caesar.</description>
</title>
<title id="AUGUSTUS">
<name>Augustus</name>
<name_gr>-</name_gr>
<abbreviation>Aug.</abbreviation>
<description>The first Roman emperor's title, signifying revered or majestic status.</description>
</title>
</emperorTitles>
"""
# -------------------------------
# Parse Authority Lists
# -------------------------------
def parse_materials(xml_string):
materials = {}
root = ET.fromstring(xml_string)
for material in root.findall('material'):
material_id = material.get('id')
materials[material_id] = {
'Name': material.find('name').text,
'Name_EN': material.find('name_en').text,
'Description': material.find('description').text
}
return materials
def parse_places(xml_string):
places = {}
root = ET.fromstring(xml_string)
for place in root.findall('place'):
place_id = place.get('id')
places[place_id] = {
'Name': place.find('name').text,
'GeoNames Link': place.find('geonamesLink').text,
'Pleiades Link': place.find('pleiadesLink').text,
'Latitude': float(place.find('latitude').text),
'Longitude': float(place.find('longitude').text),
'Description': place.find('description').text
}
return places
def parse_titles(xml_string):
titles = {}
root = ET.fromstring(xml_string)
for title in root.findall('title'):
title_id = title.get('id')
titles[title_id] = {
'Name': title.find('name').text,
'Name_GR': title.find('name_gr').text,
'Abbreviation': title.find('abbreviation').text,
'Description': title.find('description').text
}
return titles
# Load authority data
materials_dict = parse_materials(materials_xml)
places_dict = parse_places(places_xml)
titles_dict = parse_titles(titles_xml)
# -------------------------------
# Function to Find Place ID by Name (Case-Insensitive)
# -------------------------------
def find_place_id_by_name(name):
"""
Finds the place ID by matching the place name (case-insensitive).
Returns the place ID if found, else returns the original name.
"""
for id_, place in places_dict.items():
if place['Name'].strip().lower() == name.strip().lower():
return id_
return name # Return the original name if no match is found
# -------------------------------
# Function to Parse Inscriptions
# -------------------------------
def parse_inscriptions(xml_content):
tree = ET.ElementTree(ET.fromstring(xml_content))
root = tree.getroot()
inscriptions = []
for inscription in root.findall('inscription'):
n = inscription.get('n')
publisher = inscription.find('Publisher').text if inscription.find('Publisher') is not None else "N/A"
# Handle Origin with or without 'ref' attribute
origin_elem = inscription.find('Origin')
if origin_elem is not None:
origin_ref = origin_elem.get('ref')
if origin_ref:
origin_id = origin_ref
else:
origin_text = origin_elem.text.strip() if origin_elem.text else ""
origin_id = find_place_id_by_name(origin_text)
else:
origin_id = "N/A"
origin = places_dict.get(origin_id, {}).get('Name', origin_id)
origin_geonames_link = places_dict.get(origin_id, {}).get('GeoNames Link', "#")
origin_pleiades_link = places_dict.get(origin_id, {}).get('Pleiades Link', "#")
latitude = places_dict.get(origin_id, {}).get('Latitude', None)
longitude = places_dict.get(origin_id, {}).get('Longitude', None)
# Handle Material with or without 'ref' attribute
material_elem = inscription.find('Material')
if material_elem is not None:
material_ref = material_elem.get('ref')
if material_ref:
material_id = material_ref
else:
material_text = material_elem.text.strip() if material_elem.text else ""
# Attempt to find material ID by matching the name_en
material_id = None
for id_, material in materials_dict.items():
if material['Name_EN'].strip().lower() == material_text.strip().lower():
material_id = id_
break
if not material_id:
material_id = material_text # Use the text if no match found
else:
material_id = "N/A"
material = materials_dict.get(material_id, {}).get('Name_EN', material_id)
language = inscription.find('Language').text if inscription.find('Language') is not None else "N/A"
# Extract Titles from the Text element
text_elem = inscription.find('Text')
titles_used = []
titles_descriptions = []
if text_elem is not None:
for title in text_elem.findall('.//title'):
title_ref = title.get('ref')
if title_ref and title_ref in titles_dict:
title_info = titles_dict[title_ref]
title_name = title_info['Name']
title_description = title_info['Description']
titles_used.append(title_name)
titles_descriptions.append(title_description)
elif title.text:
title_text = title.text.strip()
titles_used.append(title_text)
titles_descriptions.append("No description available.")
text = "".join(text_elem.itertext()).strip() if text_elem is not None else "N/A"
dating = inscription.find('Dating').text if inscription.find('Dating') is not None else "N/A"
images = inscription.find('Images').text if inscription.find('Images') is not None else "N/A"
encoder = inscription.find('Encoder').text if inscription.find('Encoder') is not None else "N/A"
category_terms = [term.text for term in inscription.findall('Category/term')]
inscriptions.append({
'Number': n,
'Publisher': publisher,
'Origin_ID': origin_id,
'Origin': origin,
'GeoNames Link': origin_geonames_link,
'Pleiades Link': origin_pleiades_link,
'Latitude': latitude,
'Longitude': longitude,
'Material_ID': material_id,
'Material': material,
'Language': language,
'Titles': ", ".join(titles_used) if titles_used else "N/A",
'Title_Descriptions': "; ".join(titles_descriptions) if titles_descriptions else "N/A",
'Text': text,
'Dating': dating,
'Images': images,
'Encoder': encoder,
'Categories': ", ".join(category_terms)
})
return pd.DataFrame(inscriptions)
# -------------------------------
# Functions to Render Editions
# -------------------------------
def render_diplomatic(text_element):
lines = []
current_line = ""
for elem in text_element.iter():
if elem.tag == "lb":
if current_line:
lines.append(current_line.strip())
current_line = "" # Start a new line
line_number = elem.get("n", "")
current_line += f"{line_number} " if line_number else ""
elif elem.tag == "supplied":
# Process nested <expan> elements and concatenate abbreviations
supplied_content = ""
for sub_elem in elem.findall(".//expan"): # Nested <expan> elements
abbr_elem = sub_elem.find("abbr")
if abbr_elem is not None and abbr_elem.text:
supplied_content += abbr_elem.text.upper()
current_line += f"[{supplied_content}]"
elif elem.tag == "expan":
# Use only the abbreviation part
abbr_elem = elem.find("abbr")
if abbr_elem is not None and abbr_elem.text:
current_line += abbr_elem.text.upper()
elif elem.tag == "g" and elem.get("type") == "leaf":
current_line += " LEAF "
elif elem.tag == "title" and elem.get("type") == "emperor":
# Include title abbreviations
title_ref = elem.get('ref')
title_info = titles_dict.get(title_ref, {})
abbreviation = title_info.get('Abbreviation', '')
current_line += abbreviation
elif elem.text and elem.tag not in ["supplied", "expan", "g", "title"]:
current_line += elem.text.upper()
if current_line:
lines.append(current_line.strip()) # Append the last line
return "\n".join(lines)
def render_editor(text_element):
lines = []
current_line = ""
for elem in text_element.iter():
if elem.tag == "lb":
if current_line:
lines.append(current_line.strip())
current_line = "" # Start a new line
line_number = elem.get("n", "")
current_line += f"{line_number} " if line_number else ""
elif elem.tag == "supplied":
# Process nested <expan> elements with abbreviation and expansion
supplied_content = []
for sub_elem in elem.findall(".//expan"): # Nested <expan> elements
abbr_elem = sub_elem.find("abbr")
ex_elem = sub_elem.find("ex")
abbr = abbr_elem.text if abbr_elem is not None and abbr_elem.text else ""
ex = ex_elem.text if ex_elem is not None and ex_elem.text else ""
supplied_content.append(f"{abbr}({ex})")
current_line += " ".join(supplied_content)
elif elem.tag == "expan":
# Render abbreviation and expansion
abbr_elem = elem.find("abbr")
ex_elem = elem.find("ex")
abbr = abbr_elem.text if abbr_elem is not None and abbr_elem.text else ""
ex = ex_elem.text if ex_elem is not None and ex_elem.text else ""
current_line += f"{abbr}({ex})"
elif elem.tag == "g" and elem.get("type") == "leaf":
current_line += " ((leaf)) "
elif elem.tag == "title" and elem.get("type") == "emperor":
# Render title abbreviation and name
title_ref = elem.get('ref')
title_info = titles_dict.get(title_ref, {})
abbreviation = title_info.get('Abbreviation', '')
name_gr = title_info.get('Name_GR', '')
current_line += f"{abbreviation} {name_gr}"
elif elem.text and elem.tag not in ["supplied", "expan", "g", "title"]:
current_line += elem.text
if current_line:
lines.append(current_line.strip()) # Append the last line
return "\n".join(lines)
# -------------------------------
# Streamlit App Layout
# -------------------------------
st.set_page_config(page_title="Epigraphic XML Viewer", layout="wide")
st.title("Epigraphic XML Viewer: Diplomatic and Editor Editions")
# -------------------------------
# Sidebar - Project Information
# -------------------------------
with st.sidebar:
st.image("imgs/logo_inscripta.jpg", use_container_width=True, caption="Latin and Ancient Greek Inscriptions")
st.header("Project Information")
st.markdown("""
**Epigraphic Database Viewer** is a tool designed to visualize and analyze ancient inscriptions.
**Features**:
- Upload and view XML inscriptions data.
- Explore inscriptions in various formats.
- Visualize geographical origins on an interactive map.
**Authority Lists**:
- **Materials**: Details about materials used in inscriptions.
- **Places**: Geographical data and descriptions.
- **Emperor Titles**: Titles and abbreviations used in inscriptions.
**Developed by**: Kristiyan Simeonov, Sofia University
""")
# -------------------------------
# File uploader for Inscriptions XML
# -------------------------------
uploaded_file = st.file_uploader("Upload Inscriptions XML File", type=["xml"])
if uploaded_file:
st.success("File uploaded successfully!")
# Read uploaded XML content
inscriptions_content = uploaded_file.getvalue().decode("utf-8")
else:
st.info("No file uploaded. Using default sample XML data.")
# Default XML data (as provided by the user)
inscriptions_content = """<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE epiData SYSTEM "epiData.dtd"> <!--<!DOCTYPE epiData SYSTEM "https://raw.githubusercontent.com/Bestroi150/EpiDataBase/refs/heads/main/epiData.dtd">-->
<epiData>
<inscription n="1">
<Publisher>EDCS</Publisher>
<Origin ref="VIZE">Vize</Origin>
<Origin-Geonames-Link>https://www.geonames.org/738154/vize.html</Origin-Geonames-Link>
<Origin-Pleiades-Link>https://pleiades.stoa.org/places/511190</Origin-Pleiades-Link>
<Institution ID="AE 1951, 00257"></Institution>
<Category>
<term>Augusti/Augustae</term>
<term>ordo senatorius</term>
<term>tituli sacri</term>
<term>tria nomina</term>
<term>viri</term>
</Category>
<Material ref="LAPIS">lapis</Material>
<Language>Greek</Language>
<Text>
<lb n="1"/>ἀγαθῇ τύχῃ
<lb n="2"/>ὑπὲρ τῆς τοῦ <title type="emperor" ref="IMPERATOR">Αὐτοκράτορος</title>
<lb n="3" break="no"/><expan><abbr>T</abbr><ex>ίτου</ex></expan> <expan>Αἰλ<ex>ίου</ex></expan> <persName type="emperor">Ἁδριανοῦ Ἀντωνείνου</persName> <title type="emperor">Καί
<lb n="4"/>σαρος</title><expan>Σεβ<ex>αστοῦ</ex></expan> Εὐσεβοῦς καὶ Οὐήρου Καίσαρ
<lb n="5"/>ος νείκης τε καὶ αἰωνίου διαμονῆς καὶ τοῦ
<lb n="6"/>σύμπαντος αὐτῶν οἴκου ἱερᾶς τε
<lb n="7"/>συνκλήτου καὶ δήμου Ῥωμαίων
<lb n="8" break="no"/>ἡγεμονεύοντος <place type="province">ἐπαρχείας Θρᾴκης</place>
<lb n="9"/><persName type="official"> <expan>Γ<ex>αΐου</ex></expan> Ἰουλίου <expan>Κομ<ex>μ</ex></expan>όδου</persName> <title type="official">πρεσβ<ex>ευτοῦ</ex></title> <expan>Σεβ<ex>αστοῦ</ex></expan>
<lb n="10"/>ἀντιστρατήγου ἡ <place type="city">πόλις Βιζυηνῶν</place>
<lb n="11"/>κατεσκεύασεν τοὺς πυργοὺς διὰ
<lb n="12" break="no"/>ἐπιμελητῶν Φίρμου Αυλουπορε
<lb n="13"/>ος καὶ Αυλουκενθου Δυτουκενθου
<lb n="14"/>καὶ Ραζδου Ὑακίνθου εὐτυχεῖτε
</Text>
<Dating>155 to 155</Dating>
<Images>https://db.edcs.eu/epigr/ae/ae1951/ae1951-74.pdf</Images>
<Encoder>Admin</Encoder>
</inscription>
</epiData>
"""
# -------------------------------
# Parse Inscriptions
# -------------------------------
try:
df = parse_inscriptions(inscriptions_content)
except ET.ParseError as e:
st.error(f"Error parsing XML: {e}")
st.stop()
# -------------------------------
# Tabs for Different Views
# -------------------------------
tabs = st.tabs(["Raw XML", "DataFrame", "Diplomatic Edition", "Editor Edition", "Visualization", "Authority Connections"])
# -------------------------------
# Raw XML Tab
# -------------------------------
with tabs[0]:
st.subheader("Raw XML Content")
st.code(inscriptions_content, language="xml")
# -------------------------------
# DataFrame Tab
# -------------------------------
with tabs[1]:
st.subheader("Inscriptions Data")
st.dataframe(df)
# -------------------------------
# Diplomatic Edition Tab
# -------------------------------
import streamlit as st
import xml.etree.ElementTree as ET
import unicodedata
# Function to remove diacritics from text
def remove_diacritics(text):
"""
Removes diacritics from the input text.
"""
normalized_text = unicodedata.normalize('NFD', text)
return ''.join(
char for char in normalized_text
if unicodedata.category(char) != 'Mn'
)
# Function to process the Text element
def render_diplomatic(text_elem):
"""
Transforms the XML Text element into uppercase Greek text without diacritics and spaces,
with line breaks at <lb> tags. Handles <expan> tags by including only the <abbr> text.
"""
lines = []
current_line = []
# Define a helper function to process elements recursively
def process_element(elem):
if elem.tag == 'lb':
finalize_current_line()
if elem.tail:
# After <lb>, the tail text is the start of the new line
current_line.append(elem.tail)
elif elem.tag == 'expan':
abbr_elem = elem.find('abbr')
if abbr_elem is not None and abbr_elem.text:
current_line.append(abbr_elem.text)
# Do not process <ex> or any other children within <expan>
if elem.tail:
current_line.append(elem.tail)
else:
if elem.text:
current_line.append(elem.text)
# Recursively process child elements
for child in elem:
process_element(child)
if elem.tail:
current_line.append(elem.tail)
def finalize_current_line():
"""
Finalizes the current line by removing diacritics, spaces, converting to uppercase,
and appending it to the lines list.
"""
nonlocal current_line
line_text = ''.join(current_line).strip()
if line_text:
# Remove diacritics and spaces, then convert to uppercase
line_text = remove_diacritics(line_text).replace(' ', '').upper()
lines.append(line_text)
current_line = []
# Start processing from the root text element
process_element(text_elem)
# Finalize the last line if any
if current_line:
finalize_current_line()
# Join all lines with newline characters
return '\n'.join(lines)
# Streamlit Application
# Ensure that 'tabs' and 'df' are properly defined in your Streamlit app context
with tabs[2]:
st.subheader("Diplomatic Edition")
# Select Inscription
inscription_numbers = df['Number'].tolist()
selected_inscription_num = st.selectbox("Select Inscription Number", inscription_numbers)
selected_inscription = df[df['Number'] == selected_inscription_num].iloc[0]
# Parse the selected inscription's XML to get the Text element
try:
tree = ET.ElementTree(ET.fromstring(inscriptions_content))
root = tree.getroot()
inscription_elem = root.find(f".//inscription[@n='{selected_inscription_num}']")
text_element = inscription_elem.find("Text") if inscription_elem is not None else None
except ET.ParseError:
st.error("Failed to parse the XML content. Please check the XML structure.")
text_element = None
if text_element is not None:
diplomatic_text = render_diplomatic(text_element)
st.code(diplomatic_text, language="plaintext")
else:
st.warning("No text found for the selected inscription.")
# -------------------------------
# Editor Edition Tab
# -------------------------------
def render_editor(text_element):
"""
Processes the Text XML element and converts it to plaintext.
"""
def process_element(elem):
result = elem.text if elem.text else ''
for child in elem:
if child.tag == 'lb':
# Line break; add a newline
result += '\n'
elif child.tag == 'expan':
# Handle expansions, e.g., <expan><abbr>T</abbr><ex>ίτου</ex></expan> → T(ίτου)
abbr = child.find('abbr')
ex = child.find('ex')
if abbr is not None and ex is not None:
result += f"{abbr.text}({ex.text})"
else:
# If structure is unexpected, process children recursively
result += process_element(child)
elif child.tag == 'abbr':
# Abbreviation; add text without special formatting
result += child.text if child.text else ''
elif child.tag == 'ex':
# Expansion; add text within parentheses
result += f"({child.text})" if child.text else ''
elif child.tag in ['persName', 'place', 'title']:
# Names and titles; add text without tags
# If they contain nested elements, process them
result += process_element(child)
else:
# For any other tags, process their children
result += process_element(child)
if child.tail:
result += child.tail
return result
return process_element(text_element).strip()
with tabs[3]:
st.subheader("Editor Edition")
# Select Inscription
inscription_numbers = df['Number'].tolist()
selected_inscription_num = st.selectbox("Select Inscription Number", inscription_numbers, key='editor_select')
# Parse the entire XML to find the selected inscription
try:
# Parse the entire XML content
tree = ET.ElementTree(ET.fromstring(inscriptions_content))
root = tree.getroot()
# Locate the inscription element with the matching number
inscription_elem = root.find(f".//inscription[@n='{selected_inscription_num}']")
# If the root itself is the inscription
if inscription_elem is None and root.tag == 'inscription' and root.attrib.get('n') == str(selected_inscription_num):
inscription_elem = root
text_element = inscription_elem.find("Text") if inscription_elem is not None else None
if text_element is not None:
editor_text = render_editor(text_element)
st.code(editor_text, language="plaintext")
else:
st.warning("No text found for the selected inscription.")
except ET.ParseError as e:
st.error(f"Error parsing XML: {e}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
# -------------------------------
# Visualization Tab
# -------------------------------
with tabs[4]:
st.subheader("Visualization")
# Extract categories
all_categories = set()
for categories in df['Categories']:
for cat in categories.split(", "):
all_categories.add(cat)
# Category filtering
selected_categories = st.multiselect("Filter by Category", sorted(all_categories))
if selected_categories:
filtered_df = df[df['Categories'].apply(lambda x: any(cat in x.split(", ") for cat in selected_categories))]
else:
filtered_df = df.copy()
# Merge with places to get coordinates
def get_coordinates(origin_id):
place = places_dict.get(origin_id, {})
return place.get('Latitude'), place.get('Longitude')
# Apply the function to get Latitude and Longitude
filtered_df['Latitude'], filtered_df['Longitude'] = zip(*filtered_df['Origin_ID'].apply(get_coordinates))
# Drop entries without coordinates
map_df = filtered_df.dropna(subset=['Latitude', 'Longitude'])
if not map_df.empty:
# Create a Folium map centered around the average coordinates
avg_lat = map_df['Latitude'].mean()
avg_lon = map_df['Longitude'].mean()
folium_map = folium.Map(location=[avg_lat, avg_lon], zoom_start=6)
# Add markers to the map
for _, row in map_df.iterrows():
popup_content = f"""
<b>Inscription Number:</b> {row['Number']}<br>
<b>Publisher:</b> {row['Publisher']}<br>
<b>Material:</b> {row['Material']}<br>
<b>Language:</b> {row['Language']}<br>
<b>Dating:</b> {row['Dating']}<br>
<b>Encoder:</b> {row['Encoder']}<br>
<b>Categories:</b> {row['Categories']}<br>
<b>Text:</b> {row['Text']}<br>
"""
if row['Images'] and row['Images'] != "N/A":
popup_content += f'<a href="{row["Images"]}" target="_blank">View Images</a><br>'
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=folium.Popup(popup_content, max_width=300),
tooltip=f"Inscription {row['Number']}"
).add_to(folium_map)
# Display the Folium map using streamlit_folium
st_folium(folium_map, width=700, height=500)
else:
st.write("No inscriptions to display on the map based on the selected filters.")
st.dataframe(filtered_df)
# Detailed View
for _, row in filtered_df.iterrows():
with st.expander(f"Inscription {row['Number']}"):
st.markdown(f"**Publisher**: {row['Publisher']}")
st.markdown(f"**Origin**: {row['Origin']} ([GeoNames Link]({row['GeoNames Link']}), [Pleiades Link]({row['Pleiades Link']}))")
st.markdown(f"**Material**: {row['Material']} - {materials_dict.get(row['Material_ID'], {}).get('Description', '')}")
st.markdown(f"**Language**: {row['Language']}")
st.markdown(f"**Dating**: {row['Dating']}")
st.markdown(f"**Encoder**: {row['Encoder']}")
st.markdown(f"**Categories**: {row['Categories']}")
st.markdown(f"**Text**:\n\n{row['Text']}")
if row['Images'] and row['Images'] != "N/A":
st.markdown(f"[View Images]({row['Images']})")
# Display material description
material_desc = materials_dict.get(row['Material_ID'], {}).get('Description', "No description available.")
st.markdown(f"**Material Description**: {material_desc}")
# Display place description
place_desc = places_dict.get(row['Origin_ID'], {}).get('Description', "No description available.")
st.markdown(f"**Place Description**: {place_desc}")
# -------------------------------
# Authority Connections Tab
# -------------------------------
with tabs[5]:
st.subheader("Authority Connections")
# Define Authority Types
authority_types = ["Material", "Place", "Title"] # Added "Title"
# Select Authority Type
selected_authority_type = st.selectbox("Select Authority Type", authority_types)
# Based on selection, provide the corresponding options
if selected_authority_type == "Material":
# List all materials from materials_dict
material_names = [material['Name_EN'] for material in materials_dict.values()]
selected_material = st.selectbox("Select Material", sorted(material_names))
# Find the material ID based on the selected name
material_id = None
for id_, material in materials_dict.items():
if material['Name_EN'] == selected_material:
material_id = id_
break
if material_id:
# Filter inscriptions that reference this material
connected_inscriptions = df[df['Material_ID'] == material_id]
st.markdown(f"### Inscriptions using **{selected_material}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Origin', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Inscriptions Over Time**
st.markdown("#### Inscriptions Over Time")
# Assuming 'Dating' is in a format that can be processed (e.g., "155 to 155")
def extract_start_year(dating):
if isinstance(dating, str):
parts = dating.split('to')
try:
return int(parts[0].strip())
except:
return None
return None
connected_inscriptions['Start_Year'] = connected_inscriptions['Dating'].apply(extract_start_year)
year_counts = connected_inscriptions['Start_Year'].dropna().astype(int).value_counts().sort_index()
year_counts = year_counts.reset_index()
year_counts.columns = ['Year', 'Count']
fig_bar = px.bar(
year_counts,
x='Year',
y='Count',
labels={'Count': 'Number of Inscriptions'},
title=f'Number of Inscriptions Using {selected_material} Over Time',
template='plotly_white'
)
st.plotly_chart(fig_bar, use_container_width=True)
# **Plotly Visualization: Network Graph of Inscriptions and Materials**
st.markdown("#### Network Graph of Inscriptions and Materials")
# Create a network graph using Plotly
G = nx.Graph()
# Add nodes
G.add_node(selected_material, type='Material')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_material, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['lightblue' if G.nodes[node]['type'] == 'Material' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_material} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found for the selected material.")
elif selected_authority_type == "Place":
# List all places from places_dict
place_names = [place['Name'] for place in places_dict.values()]
selected_place = st.selectbox("Select Place", sorted(place_names))
# Find the place ID based on the selected name
place_id = None
for id_, place in places_dict.items():
if place['Name'] == selected_place:
place_id = id_
break
if place_id:
# Filter inscriptions that originate from this place
connected_inscriptions = df[df['Origin_ID'] == place_id]
st.markdown(f"### Inscriptions from **{selected_place}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Material', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Geographical Distribution of Inscriptions**
st.markdown("#### Geographical Distribution of Inscriptions")
map_df = connected_inscriptions[['Latitude', 'Longitude', 'Number']]
map_df = map_df.dropna(subset=['Latitude', 'Longitude'])
if not map_df.empty:
fig_map = px.scatter_geo(
map_df,
lat='Latitude',
lon='Longitude',
hover_name='Number',
title=f'Geographical Distribution of Inscriptions from {selected_place}',
template='plotly_white'
)
fig_map.update_layout(
geo=dict(
scope='world',
projection_type='natural earth',
showland=True,
landcolor='lightgray',
showcountries=True,
)
)
st.plotly_chart(fig_map, use_container_width=True)
else:
st.info("No geographical data available for these inscriptions.")
# **Plotly Visualization: Network Graph of Inscriptions and Places**
st.markdown("#### Network Graph of Inscriptions and Places")
G = nx.Graph()
# Add nodes
G.add_node(selected_place, type='Place')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_place, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['salmon' if G.nodes[node]['type'] == 'Place' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_place} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found for the selected place.")
elif selected_authority_type == "Title":
# List all titles from titles_dict
title_names = [title['Name'] for title in titles_dict.values()]
selected_title = st.selectbox("Select Title", sorted(title_names))
# Find the title ID based on the selected name
title_id = None
for id_, title in titles_dict.items():
if title['Name'] == selected_title:
title_id = id_
break
if title_id:
# Filter inscriptions that reference this title
# Assuming 'Titles' column contains comma-separated titles
connected_inscriptions = df[df['Titles'].str.contains(selected_title, case=False, na=False)]
st.markdown(f"### Inscriptions referencing **{selected_title}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Origin', 'Material', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Inscriptions Referencing the Title Over Time**
st.markdown("#### Inscriptions Referencing the Title Over Time")
def extract_start_year(dating):
if isinstance(dating, str):
parts = dating.split('to')
try:
return int(parts[0].strip())
except:
return None
return None
connected_inscriptions['Start_Year'] = connected_inscriptions['Dating'].apply(extract_start_year)
year_counts = connected_inscriptions['Start_Year'].dropna().astype(int).value_counts().sort_index()
year_counts = year_counts.reset_index()
year_counts.columns = ['Year', 'Count']
fig_bar = px.bar(
year_counts,
x='Year',
y='Count',
labels={'Count': 'Number of Inscriptions'},
title=f'Number of Inscriptions Referencing "{selected_title}" Over Time',
template='plotly_white'
)
st.plotly_chart(fig_bar, use_container_width=True)
# **Plotly Visualization: Network Graph of Inscriptions and Titles**
st.markdown("#### Network Graph of Inscriptions and Titles")
# Create a network graph using Plotly
G = nx.Graph()
# Add nodes
G.add_node(selected_title, type='Title')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_title, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['orange' if G.nodes[node]['type'] == 'Title' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_title} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found referencing the selected title.")
# -------------------------------
# Footer
# -------------------------------
st.markdown("""
---
**© 2024 InscriptaNET**
""")
|