import streamlit as st
import xml.etree.ElementTree as ET
import pandas as pd
from io import StringIO
import folium
from streamlit_folium import st_folium
import unicodedata
import networkx as nx
import plotly.express as px
import plotly.graph_objects as go
# -------------------------------
# Authority Lists as XML Strings
# -------------------------------
materials_xml = """
Lapis
Stone
Stone used as a durable medium for inscriptions and engravings.
Argentum
Silver
Silver used in inscriptions, often for its lustrous appearance and value.
Plumbum
Lead
Lead utilized in inscriptions, valued for its malleability and ease of engraving.
Opus Figlinae
Pottery
Pottery used as a medium for inscriptions, typically in the form of ceramic artifacts.
"""
places_xml = """
Vize
https://www.geonames.org/738154/vize.html
https://pleiades.stoa.org/places/511190
40.6545
28.4078
Ancient city located in modern-day Turkey.
Philippi
https://www.geonames.org/734652/filippoi-philippi.html
https://pleiades.stoa.org/places/501482
40.5044
24.9722
Ancient city in Macedonia, founded by Philip II of Macedon.
Augusta Traiana
https://www.geonames.org/maps/google_42.4333_25.65.html
https://pleiades.stoa.org/places/216731
42.4259
25.6272
Ancient Roman city, present-day Stara Zagora in Bulgaria.
Dyrrachium
https://www.geonames.org/3185728/durres.html
https://pleiades.stoa.org/places/481818
41.3231
19.4417
Ancient city on the Adriatic coast, present-day Durrës in Albania.
Antisara
https://www.geonames.org/736079/akra-kalamitsa.html
https://pleiades.stoa.org/places/501351
39.5000
20.0000
Ancient settlement, exact modern location TBD.
Macedonia
-
-
40.0000
22.0000
Historical region in Southeast Europe, encompassing parts of modern Greece, North Macedonia, and Bulgaria.
"""
titles_xml = """
Imperator
Αυτοκράτορας
Imp.
A title granted to a victorious general, later adopted as a formal title by Roman emperors.
Caesar
Καῖσαρ
Caes.
A title used by Roman emperors, originally the family name of Julius Caesar.
Augustus
-
Aug.
The first Roman emperor's title, signifying revered or majestic status.
"""
# -------------------------------
# Parse Authority Lists
# -------------------------------
def parse_materials(xml_string):
materials = {}
root = ET.fromstring(xml_string)
for material in root.findall('material'):
material_id = material.get('id')
materials[material_id] = {
'Name': material.find('name').text,
'Name_EN': material.find('name_en').text,
'Description': material.find('description').text
}
return materials
def parse_places(xml_string):
places = {}
root = ET.fromstring(xml_string)
for place in root.findall('place'):
place_id = place.get('id')
places[place_id] = {
'Name': place.find('name').text,
'GeoNames Link': place.find('geonamesLink').text,
'Pleiades Link': place.find('pleiadesLink').text,
'Latitude': float(place.find('latitude').text),
'Longitude': float(place.find('longitude').text),
'Description': place.find('description').text
}
return places
def parse_titles(xml_string):
titles = {}
root = ET.fromstring(xml_string)
for title in root.findall('title'):
title_id = title.get('id')
titles[title_id] = {
'Name': title.find('name').text,
'Name_GR': title.find('name_gr').text,
'Abbreviation': title.find('abbreviation').text,
'Description': title.find('description').text
}
return titles
# Load authority data
materials_dict = parse_materials(materials_xml)
places_dict = parse_places(places_xml)
titles_dict = parse_titles(titles_xml)
# -------------------------------
# Function to Find Place ID by Name (Case-Insensitive)
# -------------------------------
def find_place_id_by_name(name):
"""
Finds the place ID by matching the place name (case-insensitive).
Returns the place ID if found, else returns the original name.
"""
for id_, place in places_dict.items():
if place['Name'].strip().lower() == name.strip().lower():
return id_
return name # Return the original name if no match is found
# -------------------------------
# Function to Parse Inscriptions
# -------------------------------
def parse_inscriptions(xml_content):
tree = ET.ElementTree(ET.fromstring(xml_content))
root = tree.getroot()
inscriptions = []
for inscription in root.findall('inscription'):
n = inscription.get('n')
publisher = inscription.find('Publisher').text if inscription.find('Publisher') is not None else "N/A"
# Handle Origin with or without 'ref' attribute
origin_elem = inscription.find('Origin')
if origin_elem is not None:
origin_ref = origin_elem.get('ref')
if origin_ref:
origin_id = origin_ref
else:
origin_text = origin_elem.text.strip() if origin_elem.text else ""
origin_id = find_place_id_by_name(origin_text)
else:
origin_id = "N/A"
origin = places_dict.get(origin_id, {}).get('Name', origin_id)
origin_geonames_link = places_dict.get(origin_id, {}).get('GeoNames Link', "#")
origin_pleiades_link = places_dict.get(origin_id, {}).get('Pleiades Link', "#")
latitude = places_dict.get(origin_id, {}).get('Latitude', None)
longitude = places_dict.get(origin_id, {}).get('Longitude', None)
# Handle Material with or without 'ref' attribute
material_elem = inscription.find('Material')
if material_elem is not None:
material_ref = material_elem.get('ref')
if material_ref:
material_id = material_ref
else:
material_text = material_elem.text.strip() if material_elem.text else ""
# Attempt to find material ID by matching the name_en
material_id = None
for id_, material in materials_dict.items():
if material['Name_EN'].strip().lower() == material_text.strip().lower():
material_id = id_
break
if not material_id:
material_id = material_text # Use the text if no match found
else:
material_id = "N/A"
material = materials_dict.get(material_id, {}).get('Name_EN', material_id)
language = inscription.find('Language').text if inscription.find('Language') is not None else "N/A"
# Extract Titles from the Text element
text_elem = inscription.find('Text')
titles_used = []
titles_descriptions = []
if text_elem is not None:
for title in text_elem.findall('.//title'):
title_ref = title.get('ref')
if title_ref and title_ref in titles_dict:
title_info = titles_dict[title_ref]
title_name = title_info['Name']
title_description = title_info['Description']
titles_used.append(title_name)
titles_descriptions.append(title_description)
elif title.text:
title_text = title.text.strip()
titles_used.append(title_text)
titles_descriptions.append("No description available.")
text = "".join(text_elem.itertext()).strip() if text_elem is not None else "N/A"
dating = inscription.find('Dating').text if inscription.find('Dating') is not None else "N/A"
images = inscription.find('Images').text if inscription.find('Images') is not None else "N/A"
encoder = inscription.find('Encoder').text if inscription.find('Encoder') is not None else "N/A"
category_terms = [term.text for term in inscription.findall('Category/term')]
inscriptions.append({
'Number': n,
'Publisher': publisher,
'Origin_ID': origin_id,
'Origin': origin,
'GeoNames Link': origin_geonames_link,
'Pleiades Link': origin_pleiades_link,
'Latitude': latitude,
'Longitude': longitude,
'Material_ID': material_id,
'Material': material,
'Language': language,
'Titles': ", ".join(titles_used) if titles_used else "N/A",
'Title_Descriptions': "; ".join(titles_descriptions) if titles_descriptions else "N/A",
'Text': text,
'Dating': dating,
'Images': images,
'Encoder': encoder,
'Categories': ", ".join(category_terms)
})
return pd.DataFrame(inscriptions)
# -------------------------------
# Functions to Render Editions
# -------------------------------
def render_diplomatic(text_element):
lines = []
current_line = ""
for elem in text_element.iter():
if elem.tag == "lb":
if current_line:
lines.append(current_line.strip())
current_line = "" # Start a new line
line_number = elem.get("n", "")
current_line += f"{line_number} " if line_number else ""
elif elem.tag == "supplied":
# Process nested elements and concatenate abbreviations
supplied_content = ""
for sub_elem in elem.findall(".//expan"): # Nested elements
abbr_elem = sub_elem.find("abbr")
if abbr_elem is not None and abbr_elem.text:
supplied_content += abbr_elem.text.upper()
current_line += f"[{supplied_content}]"
elif elem.tag == "expan":
# Use only the abbreviation part
abbr_elem = elem.find("abbr")
if abbr_elem is not None and abbr_elem.text:
current_line += abbr_elem.text.upper()
elif elem.tag == "g" and elem.get("type") == "leaf":
current_line += " LEAF "
elif elem.tag == "title" and elem.get("type") == "emperor":
# Include title abbreviations
title_ref = elem.get('ref')
title_info = titles_dict.get(title_ref, {})
abbreviation = title_info.get('Abbreviation', '')
current_line += abbreviation
elif elem.text and elem.tag not in ["supplied", "expan", "g", "title"]:
current_line += elem.text.upper()
if current_line:
lines.append(current_line.strip()) # Append the last line
return "\n".join(lines)
def render_editor(text_element):
lines = []
current_line = ""
for elem in text_element.iter():
if elem.tag == "lb":
if current_line:
lines.append(current_line.strip())
current_line = "" # Start a new line
line_number = elem.get("n", "")
current_line += f"{line_number} " if line_number else ""
elif elem.tag == "supplied":
# Process nested elements with abbreviation and expansion
supplied_content = []
for sub_elem in elem.findall(".//expan"): # Nested elements
abbr_elem = sub_elem.find("abbr")
ex_elem = sub_elem.find("ex")
abbr = abbr_elem.text if abbr_elem is not None and abbr_elem.text else ""
ex = ex_elem.text if ex_elem is not None and ex_elem.text else ""
supplied_content.append(f"{abbr}({ex})")
current_line += " ".join(supplied_content)
elif elem.tag == "expan":
# Render abbreviation and expansion
abbr_elem = elem.find("abbr")
ex_elem = elem.find("ex")
abbr = abbr_elem.text if abbr_elem is not None and abbr_elem.text else ""
ex = ex_elem.text if ex_elem is not None and ex_elem.text else ""
current_line += f"{abbr}({ex})"
elif elem.tag == "g" and elem.get("type") == "leaf":
current_line += " ((leaf)) "
elif elem.tag == "title" and elem.get("type") == "emperor":
# Render title abbreviation and name
title_ref = elem.get('ref')
title_info = titles_dict.get(title_ref, {})
abbreviation = title_info.get('Abbreviation', '')
name_gr = title_info.get('Name_GR', '')
current_line += f"{abbreviation} {name_gr}"
elif elem.text and elem.tag not in ["supplied", "expan", "g", "title"]:
current_line += elem.text
if current_line:
lines.append(current_line.strip()) # Append the last line
return "\n".join(lines)
# -------------------------------
# Streamlit App Layout
# -------------------------------
st.set_page_config(page_title="Epigraphic XML Viewer", layout="wide")
st.title("Epigraphic XML Viewer: Diplomatic and Editor Editions")
# -------------------------------
# Sidebar - Project Information
# -------------------------------
with st.sidebar:
st.image("imgs/logo_inscripta.jpg", use_container_width=True, caption="Latin and Ancient Greek Inscriptions")
st.header("Project Information")
st.markdown("""
**Epigraphic Database Viewer** is a tool designed to visualize and analyze ancient inscriptions.
**Features**:
- Upload and view XML inscriptions data.
- Explore inscriptions in various formats.
- Visualize geographical origins on an interactive map.
**Authority Lists**:
- **Materials**: Details about materials used in inscriptions.
- **Places**: Geographical data and descriptions.
- **Emperor Titles**: Titles and abbreviations used in inscriptions.
**Developed by**: Kristiyan Simeonov, Sofia University
""")
# -------------------------------
# File uploader for Inscriptions XML
# -------------------------------
uploaded_file = st.file_uploader("Upload Inscriptions XML File", type=["xml"])
if uploaded_file:
st.success("File uploaded successfully!")
# Read uploaded XML content
inscriptions_content = uploaded_file.getvalue().decode("utf-8")
else:
st.info("No file uploaded. Using default sample XML data.")
# Default XML data (as provided by the user)
inscriptions_content = """
EDCS
Vize
https://www.geonames.org/738154/vize.html
https://pleiades.stoa.org/places/511190
Augusti/Augustae
ordo senatorius
tituli sacri
tria nomina
viri
lapis
Greek
ἀγαθῇ τύχῃ
ὑπὲρ τῆς τοῦ Αὐτοκράτορος
Tίτου Αἰλίου Ἁδριανοῦ Ἀντωνείνου Καί
σαροςΣεβαστοῦ Εὐσεβοῦς καὶ Οὐήρου Καίσαρ
ος νείκης τε καὶ αἰωνίου διαμονῆς καὶ τοῦ
σύμπαντος αὐτῶν οἴκου ἱερᾶς τε
συνκλήτου καὶ δήμου Ῥωμαίων
ἡγεμονεύοντος ἐπαρχείας Θρᾴκης
Γαΐου Ἰουλίου Κομμόδου πρεσβευτοῦ Σεβαστοῦ
ἀντιστρατήγου ἡ πόλις Βιζυηνῶν
κατεσκεύασεν τοὺς πυργοὺς διὰ
ἐπιμελητῶν Φίρμου Αυλουπορε
ος καὶ Αυλουκενθου Δυτουκενθου
καὶ Ραζδου Ὑακίνθου εὐτυχεῖτε
155 to 155
https://db.edcs.eu/epigr/ae/ae1951/ae1951-74.pdf
Admin
"""
# -------------------------------
# Parse Inscriptions
# -------------------------------
try:
df = parse_inscriptions(inscriptions_content)
except ET.ParseError as e:
st.error(f"Error parsing XML: {e}")
st.stop()
# -------------------------------
# Tabs for Different Views
# -------------------------------
tabs = st.tabs(["Raw XML", "DataFrame", "Diplomatic Edition", "Editor Edition", "Visualization", "Authority Connections"])
# -------------------------------
# Raw XML Tab
# -------------------------------
with tabs[0]:
st.subheader("Raw XML Content")
st.code(inscriptions_content, language="xml")
# -------------------------------
# DataFrame Tab
# -------------------------------
with tabs[1]:
st.subheader("Inscriptions Data")
st.dataframe(df)
# -------------------------------
# Diplomatic Edition Tab
# -------------------------------
import streamlit as st
import xml.etree.ElementTree as ET
import unicodedata
# Function to remove diacritics from text
def remove_diacritics(text):
"""
Removes diacritics from the input text.
"""
normalized_text = unicodedata.normalize('NFD', text)
return ''.join(
char for char in normalized_text
if unicodedata.category(char) != 'Mn'
)
# Function to process the Text element
def render_diplomatic(text_elem):
"""
Transforms the XML Text element into uppercase Greek text without diacritics and spaces,
with line breaks at tags. Handles tags by including only the text.
"""
lines = []
current_line = []
# Define a helper function to process elements recursively
def process_element(elem):
if elem.tag == 'lb':
finalize_current_line()
if elem.tail:
# After , the tail text is the start of the new line
current_line.append(elem.tail)
elif elem.tag == 'expan':
abbr_elem = elem.find('abbr')
if abbr_elem is not None and abbr_elem.text:
current_line.append(abbr_elem.text)
# Do not process or any other children within
if elem.tail:
current_line.append(elem.tail)
else:
if elem.text:
current_line.append(elem.text)
# Recursively process child elements
for child in elem:
process_element(child)
if elem.tail:
current_line.append(elem.tail)
def finalize_current_line():
"""
Finalizes the current line by removing diacritics, spaces, converting to uppercase,
and appending it to the lines list.
"""
nonlocal current_line
line_text = ''.join(current_line).strip()
if line_text:
# Remove diacritics and spaces, then convert to uppercase
line_text = remove_diacritics(line_text).replace(' ', '').upper()
lines.append(line_text)
current_line = []
# Start processing from the root text element
process_element(text_elem)
# Finalize the last line if any
if current_line:
finalize_current_line()
# Join all lines with newline characters
return '\n'.join(lines)
# Streamlit Application
# Ensure that 'tabs' and 'df' are properly defined in your Streamlit app context
with tabs[2]:
st.subheader("Diplomatic Edition")
# Select Inscription
inscription_numbers = df['Number'].tolist()
selected_inscription_num = st.selectbox("Select Inscription Number", inscription_numbers)
selected_inscription = df[df['Number'] == selected_inscription_num].iloc[0]
# Parse the selected inscription's XML to get the Text element
try:
tree = ET.ElementTree(ET.fromstring(inscriptions_content))
root = tree.getroot()
inscription_elem = root.find(f".//inscription[@n='{selected_inscription_num}']")
text_element = inscription_elem.find("Text") if inscription_elem is not None else None
except ET.ParseError:
st.error("Failed to parse the XML content. Please check the XML structure.")
text_element = None
if text_element is not None:
diplomatic_text = render_diplomatic(text_element)
st.code(diplomatic_text, language="plaintext")
else:
st.warning("No text found for the selected inscription.")
# -------------------------------
# Editor Edition Tab
# -------------------------------
def render_editor(text_element):
"""
Processes the Text XML element and converts it to plaintext.
"""
def process_element(elem):
result = elem.text if elem.text else ''
for child in elem:
if child.tag == 'lb':
# Line break; add a newline
result += '\n'
elif child.tag == 'expan':
# Handle expansions, e.g., Tίτου → T(ίτου)
abbr = child.find('abbr')
ex = child.find('ex')
if abbr is not None and ex is not None:
result += f"{abbr.text}({ex.text})"
else:
# If structure is unexpected, process children recursively
result += process_element(child)
elif child.tag == 'abbr':
# Abbreviation; add text without special formatting
result += child.text if child.text else ''
elif child.tag == 'ex':
# Expansion; add text within parentheses
result += f"({child.text})" if child.text else ''
elif child.tag in ['persName', 'place', 'title']:
# Names and titles; add text without tags
# If they contain nested elements, process them
result += process_element(child)
else:
# For any other tags, process their children
result += process_element(child)
if child.tail:
result += child.tail
return result
return process_element(text_element).strip()
with tabs[3]:
st.subheader("Editor Edition")
# Select Inscription
inscription_numbers = df['Number'].tolist()
selected_inscription_num = st.selectbox("Select Inscription Number", inscription_numbers, key='editor_select')
# Parse the entire XML to find the selected inscription
try:
# Parse the entire XML content
tree = ET.ElementTree(ET.fromstring(inscriptions_content))
root = tree.getroot()
# Locate the inscription element with the matching number
inscription_elem = root.find(f".//inscription[@n='{selected_inscription_num}']")
# If the root itself is the inscription
if inscription_elem is None and root.tag == 'inscription' and root.attrib.get('n') == str(selected_inscription_num):
inscription_elem = root
text_element = inscription_elem.find("Text") if inscription_elem is not None else None
if text_element is not None:
editor_text = render_editor(text_element)
st.code(editor_text, language="plaintext")
else:
st.warning("No text found for the selected inscription.")
except ET.ParseError as e:
st.error(f"Error parsing XML: {e}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
# -------------------------------
# Visualization Tab
# -------------------------------
with tabs[4]:
st.subheader("Visualization")
# Extract categories
all_categories = set()
for categories in df['Categories']:
for cat in categories.split(", "):
all_categories.add(cat)
# Category filtering
selected_categories = st.multiselect("Filter by Category", sorted(all_categories))
if selected_categories:
filtered_df = df[df['Categories'].apply(lambda x: any(cat in x.split(", ") for cat in selected_categories))]
else:
filtered_df = df.copy()
# Merge with places to get coordinates
def get_coordinates(origin_id):
place = places_dict.get(origin_id, {})
return place.get('Latitude'), place.get('Longitude')
# Apply the function to get Latitude and Longitude
filtered_df['Latitude'], filtered_df['Longitude'] = zip(*filtered_df['Origin_ID'].apply(get_coordinates))
# Drop entries without coordinates
map_df = filtered_df.dropna(subset=['Latitude', 'Longitude'])
if not map_df.empty:
# Create a Folium map centered around the average coordinates
avg_lat = map_df['Latitude'].mean()
avg_lon = map_df['Longitude'].mean()
folium_map = folium.Map(location=[avg_lat, avg_lon], zoom_start=6)
# Add markers to the map
for _, row in map_df.iterrows():
popup_content = f"""
Inscription Number: {row['Number']}
Publisher: {row['Publisher']}
Material: {row['Material']}
Language: {row['Language']}
Dating: {row['Dating']}
Encoder: {row['Encoder']}
Categories: {row['Categories']}
Text: {row['Text']}
"""
if row['Images'] and row['Images'] != "N/A":
popup_content += f'View Images
'
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=folium.Popup(popup_content, max_width=300),
tooltip=f"Inscription {row['Number']}"
).add_to(folium_map)
# Display the Folium map using streamlit_folium
st_folium(folium_map, width=700, height=500)
else:
st.write("No inscriptions to display on the map based on the selected filters.")
st.dataframe(filtered_df)
# Detailed View
for _, row in filtered_df.iterrows():
with st.expander(f"Inscription {row['Number']}"):
st.markdown(f"**Publisher**: {row['Publisher']}")
st.markdown(f"**Origin**: {row['Origin']} ([GeoNames Link]({row['GeoNames Link']}), [Pleiades Link]({row['Pleiades Link']}))")
st.markdown(f"**Material**: {row['Material']} - {materials_dict.get(row['Material_ID'], {}).get('Description', '')}")
st.markdown(f"**Language**: {row['Language']}")
st.markdown(f"**Dating**: {row['Dating']}")
st.markdown(f"**Encoder**: {row['Encoder']}")
st.markdown(f"**Categories**: {row['Categories']}")
st.markdown(f"**Text**:\n\n{row['Text']}")
if row['Images'] and row['Images'] != "N/A":
st.markdown(f"[View Images]({row['Images']})")
# Display material description
material_desc = materials_dict.get(row['Material_ID'], {}).get('Description', "No description available.")
st.markdown(f"**Material Description**: {material_desc}")
# Display place description
place_desc = places_dict.get(row['Origin_ID'], {}).get('Description', "No description available.")
st.markdown(f"**Place Description**: {place_desc}")
# -------------------------------
# Authority Connections Tab
# -------------------------------
with tabs[5]:
st.subheader("Authority Connections")
# Define Authority Types
authority_types = ["Material", "Place", "Title"] # Added "Title"
# Select Authority Type
selected_authority_type = st.selectbox("Select Authority Type", authority_types)
# Based on selection, provide the corresponding options
if selected_authority_type == "Material":
# List all materials from materials_dict
material_names = [material['Name_EN'] for material in materials_dict.values()]
selected_material = st.selectbox("Select Material", sorted(material_names))
# Find the material ID based on the selected name
material_id = None
for id_, material in materials_dict.items():
if material['Name_EN'] == selected_material:
material_id = id_
break
if material_id:
# Filter inscriptions that reference this material
connected_inscriptions = df[df['Material_ID'] == material_id]
st.markdown(f"### Inscriptions using **{selected_material}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Origin', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Inscriptions Over Time**
st.markdown("#### Inscriptions Over Time")
# Assuming 'Dating' is in a format that can be processed (e.g., "155 to 155")
def extract_start_year(dating):
if isinstance(dating, str):
parts = dating.split('to')
try:
return int(parts[0].strip())
except:
return None
return None
connected_inscriptions['Start_Year'] = connected_inscriptions['Dating'].apply(extract_start_year)
year_counts = connected_inscriptions['Start_Year'].dropna().astype(int).value_counts().sort_index()
year_counts = year_counts.reset_index()
year_counts.columns = ['Year', 'Count']
fig_bar = px.bar(
year_counts,
x='Year',
y='Count',
labels={'Count': 'Number of Inscriptions'},
title=f'Number of Inscriptions Using {selected_material} Over Time',
template='plotly_white'
)
st.plotly_chart(fig_bar, use_container_width=True)
# **Plotly Visualization: Network Graph of Inscriptions and Materials**
st.markdown("#### Network Graph of Inscriptions and Materials")
# Create a network graph using Plotly
G = nx.Graph()
# Add nodes
G.add_node(selected_material, type='Material')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_material, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['lightblue' if G.nodes[node]['type'] == 'Material' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_material} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found for the selected material.")
elif selected_authority_type == "Place":
# List all places from places_dict
place_names = [place['Name'] for place in places_dict.values()]
selected_place = st.selectbox("Select Place", sorted(place_names))
# Find the place ID based on the selected name
place_id = None
for id_, place in places_dict.items():
if place['Name'] == selected_place:
place_id = id_
break
if place_id:
# Filter inscriptions that originate from this place
connected_inscriptions = df[df['Origin_ID'] == place_id]
st.markdown(f"### Inscriptions from **{selected_place}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Material', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Geographical Distribution of Inscriptions**
st.markdown("#### Geographical Distribution of Inscriptions")
map_df = connected_inscriptions[['Latitude', 'Longitude', 'Number']]
map_df = map_df.dropna(subset=['Latitude', 'Longitude'])
if not map_df.empty:
fig_map = px.scatter_geo(
map_df,
lat='Latitude',
lon='Longitude',
hover_name='Number',
title=f'Geographical Distribution of Inscriptions from {selected_place}',
template='plotly_white'
)
fig_map.update_layout(
geo=dict(
scope='world',
projection_type='natural earth',
showland=True,
landcolor='lightgray',
showcountries=True,
)
)
st.plotly_chart(fig_map, use_container_width=True)
else:
st.info("No geographical data available for these inscriptions.")
# **Plotly Visualization: Network Graph of Inscriptions and Places**
st.markdown("#### Network Graph of Inscriptions and Places")
G = nx.Graph()
# Add nodes
G.add_node(selected_place, type='Place')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_place, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['salmon' if G.nodes[node]['type'] == 'Place' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_place} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found for the selected place.")
elif selected_authority_type == "Title":
# List all titles from titles_dict
title_names = [title['Name'] for title in titles_dict.values()]
selected_title = st.selectbox("Select Title", sorted(title_names))
# Find the title ID based on the selected name
title_id = None
for id_, title in titles_dict.items():
if title['Name'] == selected_title:
title_id = id_
break
if title_id:
# Filter inscriptions that reference this title
# Assuming 'Titles' column contains comma-separated titles
connected_inscriptions = df[df['Titles'].str.contains(selected_title, case=False, na=False)]
st.markdown(f"### Inscriptions referencing **{selected_title}**")
st.write(f"**Total Inscriptions:** {len(connected_inscriptions)}")
if not connected_inscriptions.empty:
# Display inscriptions in a table
st.dataframe(connected_inscriptions[['Number', 'Publisher', 'Origin', 'Material', 'Language', 'Dating', 'Encoder']])
# **Plotly Visualization: Inscriptions Referencing the Title Over Time**
st.markdown("#### Inscriptions Referencing the Title Over Time")
def extract_start_year(dating):
if isinstance(dating, str):
parts = dating.split('to')
try:
return int(parts[0].strip())
except:
return None
return None
connected_inscriptions['Start_Year'] = connected_inscriptions['Dating'].apply(extract_start_year)
year_counts = connected_inscriptions['Start_Year'].dropna().astype(int).value_counts().sort_index()
year_counts = year_counts.reset_index()
year_counts.columns = ['Year', 'Count']
fig_bar = px.bar(
year_counts,
x='Year',
y='Count',
labels={'Count': 'Number of Inscriptions'},
title=f'Number of Inscriptions Referencing "{selected_title}" Over Time',
template='plotly_white'
)
st.plotly_chart(fig_bar, use_container_width=True)
# **Plotly Visualization: Network Graph of Inscriptions and Titles**
st.markdown("#### Network Graph of Inscriptions and Titles")
# Create a network graph using Plotly
G = nx.Graph()
# Add nodes
G.add_node(selected_title, type='Title')
for _, row in connected_inscriptions.iterrows():
inscription_node = f"Inscription {row['Number']}"
G.add_node(inscription_node, type='Inscription')
G.add_edge(selected_title, inscription_node)
# Generate positions for the nodes
pos = nx.spring_layout(G, k=0.5, iterations=50)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
marker=dict(
showscale=False,
color=['orange' if G.nodes[node]['type'] == 'Title' else 'lightgreen' for node in G.nodes()],
size=20,
line_width=2
)
)
fig_network = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title=f"Network Graph: {selected_title} and Connected Inscriptions",
titlefont_size=16,
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
text="",
showarrow=False,
xref="paper", yref="paper") ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
)
st.plotly_chart(fig_network, use_container_width=True)
else:
st.info("No inscriptions found referencing the selected title.")
# -------------------------------
# Footer
# -------------------------------
st.markdown("""
---
**© 2024 InscriptaNET**
""")