Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,22 +27,23 @@ analytics_data = pd.DataFrame(columns=["Entry", "Clicks"]) # Declare as a globa
|
|
27 |
|
28 |
def get_random_entry():
|
29 |
random_row = data.sample()
|
|
|
30 |
pos = random_row['pos'].values[0]
|
31 |
|
32 |
if pos == "n":
|
33 |
-
entry_str = f"<b>POS:</b> Noun, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Gender:</b> {random_row['gender'].values[0]}, <b>Case:</b> {random_row['case'].values[0]}, <b>Number:</b> {random_row['number'].values[0]}"
|
34 |
elif pos == "adp":
|
35 |
-
entry_str = f"<b>POS:</b> Preposition, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
36 |
elif pos == "adi":
|
37 |
-
entry_str = f"<b>POS:</b> Adjective, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Gender:</b> {random_row['gender'].values[0]}, <b>Case:</b> {random_row['case'].values[0]}, <b>Number:</b> {random_row['number'].values[0]}"
|
38 |
elif pos == "adv":
|
39 |
-
entry_str = f"<b>POS:</b> Adverb, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
40 |
elif pos == "pron":
|
41 |
-
entry_str = f"<b>POS:</b> Pronoun, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
42 |
elif pos == "v":
|
43 |
-
entry_str = f"<b>POS:</b> Verb, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Aspect:</b> {random_row['aspect'].values[0]}, <b>Tense:</b> {random_row['tense'].values[0]}, <b>VerbForm:</b> {random_row['verbForm'].values[0]}, <b>Voice:</b> {random_row['voice'].values[0]}, <b>Mood:</b> {random_row['mood'].values[0]}"
|
44 |
else:
|
45 |
-
entry_str = f"
|
46 |
if pd.notna(random_row['aspect'].values[0]):
|
47 |
entry_str += f" Aspect: {random_row['aspect'].values[0]},"
|
48 |
if pd.notna(random_row['tense'].values[0]):
|
@@ -65,6 +66,12 @@ def get_random_entry():
|
|
65 |
# Remove the trailing comma
|
66 |
entry_str = entry_str.rstrip(',')
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
return entry_str
|
70 |
|
|
|
27 |
|
28 |
def get_random_entry():
|
29 |
random_row = data.sample()
|
30 |
+
token = random_row['token'].values[0]
|
31 |
pos = random_row['pos'].values[0]
|
32 |
|
33 |
if pos == "n":
|
34 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Noun, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Gender:</b> {random_row['gender'].values[0]}, <b>Case:</b> {random_row['case'].values[0]}, <b>Number:</b> {random_row['number'].values[0]}"
|
35 |
elif pos == "adp":
|
36 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Preposition, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
37 |
elif pos == "adi":
|
38 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Adjective, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Gender:</b> {random_row['gender'].values[0]}, <b>Case:</b> {random_row['case'].values[0]}, <b>Number:</b> {random_row['number'].values[0]}"
|
39 |
elif pos == "adv":
|
40 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Adverb, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
41 |
elif pos == "pron":
|
42 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Pronoun, <b>Lemma:</b> {random_row['lemma'].values[0]}"
|
43 |
elif pos == "v":
|
44 |
+
entry_str = f"<b>Token:</b> {token}, <b>POS:</b> Verb, <b>Lemma:</b> {random_row['lemma'].values[0]}, <b>Aspect:</b> {random_row['aspect'].values[0]}, <b>Tense:</b> {random_row['tense'].values[0]}, <b>VerbForm:</b> {random_row['verbForm'].values[0]}, <b>Voice:</b> {random_row['voice'].values[0]}, <b>Mood:</b> {random_row['mood'].values[0]}"
|
45 |
else:
|
46 |
+
entry_str = f"<b>Token:</b> {token}, Lemma: {random_row['lemma'].values[0]},"
|
47 |
if pd.notna(random_row['aspect'].values[0]):
|
48 |
entry_str += f" Aspect: {random_row['aspect'].values[0]},"
|
49 |
if pd.notna(random_row['tense'].values[0]):
|
|
|
66 |
# Remove the trailing comma
|
67 |
entry_str = entry_str.rstrip(',')
|
68 |
|
69 |
+
return entry_str
|
70 |
+
|
71 |
+
|
72 |
+
# Remove the trailing comma
|
73 |
+
entry_str = entry_str.rstrip(',')
|
74 |
+
|
75 |
|
76 |
return entry_str
|
77 |
|