bharat-mukheja's picture
Create model.py
d90da61
#!/usr/bin/env python3
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
"automatic-speech-recognition", model="openai/whisper-base", device=device
)
from datasets import load_dataset
dataset = load_dataset("facebook/voxpopuli", "it", split="validation", streaming=True)
sample = next(iter(dataset))
from IPython.display import Audio
Audio(sample["audio"]["array"], rate=sample["audio"]["sampling_rate"])
def translate(audio):
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
# print(translate(sample["audio"].copy()))
# print(sample["raw_text"])
# Text to speech
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
model.to(device)
vocoder.to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(
inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder
)
return speech.cpu()
speech = synthesise("Hey there! This is a test!")
Audio(speech, rate=16000)
# Concatenate the two models
import numpy as np
target_dtype = np.int16
max_range = np.iinfo(target_dtype).max
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
return 16000, synthesised_speech
sampling_rate, synthesised_speech = speech_to_speech_translation(sample["audio"])
Audio(synthesised_speech, rate=sampling_rate)