Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
import os
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
# explicit @spaces.GPU might not always be needed directly on the inference function
|
9 |
-
# if the entire space is on ZeroGPU hardware. However, for clarity or complex setups:
|
10 |
-
# import spaces # Uncomment if using @spaces.GPU decorator
|
11 |
|
12 |
# --- Configuration ---
|
13 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
|
15 |
MODEL_OPTIONS = {
|
16 |
"Qwen1.5-1.8B-Chat": "Qwen/Qwen1.5-1.8B-Chat",
|
17 |
-
"Qwen2.5-Coder-3B": "Qwen/Qwen2.5-Coder-3B",
|
18 |
}
|
19 |
|
20 |
# --- Model Loading Cache ---
|
21 |
-
# This dictionary will cache loaded models and tokenizers to avoid reloading on every call
|
22 |
loaded_models = {}
|
23 |
|
24 |
def get_model_and_tokenizer(model_name_key):
|
@@ -26,27 +22,24 @@ def get_model_and_tokenizer(model_name_key):
|
|
26 |
model_id = MODEL_OPTIONS[model_name_key]
|
27 |
print(f"Loading model: {model_id}...")
|
28 |
try:
|
29 |
-
# Ensure you have accepted the terms of use for these models on Hugging Face Hub
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
model_id,
|
32 |
-
torch_dtype="auto",
|
33 |
-
device_map="auto",
|
34 |
-
token=HF_TOKEN
|
35 |
)
|
36 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
37 |
loaded_models[model_name_key] = (model, tokenizer)
|
38 |
print(f"Model {model_id} loaded successfully.")
|
39 |
except Exception as e:
|
40 |
print(f"Error loading model {model_id}: {e}")
|
41 |
-
|
42 |
-
if model_name_key in loaded_models: # Remove if partially loaded
|
43 |
del loaded_models[model_name_key]
|
44 |
raise gr.Error(f"Failed to load model {model_name_key}. Please check the model ID and your Hugging Face token permissions. Error: {e}")
|
45 |
return loaded_models[model_name_key]
|
46 |
|
47 |
# --- Inference Function ---
|
48 |
-
#
|
49 |
-
# @spaces.GPU(duration=120) # Example: Request GPU for 120 seconds for this function
|
50 |
def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
51 |
if not prompt_text:
|
52 |
return "Please enter a prompt."
|
@@ -56,11 +49,11 @@ def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature
|
|
56 |
try:
|
57 |
model, tokenizer = get_model_and_tokenizer(model_choice)
|
58 |
except Exception as e:
|
59 |
-
return str(e)
|
60 |
|
61 |
-
device = model.device
|
62 |
|
63 |
-
if "Chat" in model_choice:
|
64 |
messages = [
|
65 |
{"role": "system", "content": "You are a helpful assistant."},
|
66 |
{"role": "user", "content": prompt_text}
|
@@ -71,11 +64,10 @@ def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature
|
|
71 |
tokenize=False,
|
72 |
add_generation_prompt=True
|
73 |
)
|
74 |
-
except Exception as e:
|
75 |
print(f"Warning: Could not apply chat template for {model_choice}: {e}. Using prompt as is.")
|
76 |
input_text = prompt_text
|
77 |
-
|
78 |
-
else: # For code or non-chat models, use the prompt directly or adjust as needed
|
79 |
input_text = prompt_text
|
80 |
|
81 |
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
@@ -86,15 +78,10 @@ def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature
|
|
86 |
max_new_tokens=max_new_tokens,
|
87 |
temperature=temperature,
|
88 |
top_p=top_p,
|
89 |
-
do_sample=True
|
90 |
)
|
91 |
-
# For some models, the input prompt is included in the generated_ids.
|
92 |
-
# We need to decode only the newly generated tokens.
|
93 |
-
# This slicing can vary based on the model and tokenizer.
|
94 |
-
# A common approach is to slice based on the input_ids length:
|
95 |
response_ids = generated_ids[0][model_inputs.input_ids.shape[-1]:]
|
96 |
response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
|
97 |
-
|
98 |
except Exception as e:
|
99 |
print(f"Error during generation with {model_choice}: {e}")
|
100 |
return f"Error generating response: {e}"
|
@@ -102,6 +89,7 @@ def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature
|
|
102 |
return response_text
|
103 |
|
104 |
# --- Gradio Interface ---
|
|
|
105 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
106 |
gr.Markdown("# LLM Coding & Math Experiment")
|
107 |
gr.Markdown("Query Qwen1.5-1.8B-Chat or Qwen Code models using ZeroGPU.")
|
@@ -110,7 +98,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
110 |
model_dropdown = gr.Dropdown(
|
111 |
label="Select Model",
|
112 |
choices=list(MODEL_OPTIONS.keys()),
|
113 |
-
value=list(MODEL_OPTIONS.keys())[0]
|
114 |
)
|
115 |
with gr.Row():
|
116 |
prompt_input = gr.Textbox(label="Enter your prompt:", lines=4, placeholder="e.g., Write a Python function to calculate factorial, or What is the capital of France?")
|
@@ -125,13 +113,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
125 |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature")
|
126 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
|
127 |
|
128 |
-
|
129 |
-
# Event listener for the button
|
130 |
submit_button.click(
|
131 |
fn=generate_response,
|
132 |
inputs=[prompt_input, model_dropdown, max_new_tokens_slider, temperature_slider, top_p_slider],
|
133 |
outputs=output_text,
|
134 |
-
api_name="generate"
|
135 |
)
|
136 |
|
137 |
gr.Markdown("## Notes:")
|
@@ -142,4 +128,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
import os
|
5 |
|
6 |
+
# Make sure to import the 'spaces' library
|
7 |
+
import spaces # <--- ADD THIS OR ENSURE IT'S UNCOMMENTED
|
|
|
|
|
|
|
8 |
|
9 |
# --- Configuration ---
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
|
12 |
MODEL_OPTIONS = {
|
13 |
"Qwen1.5-1.8B-Chat": "Qwen/Qwen1.5-1.8B-Chat",
|
14 |
+
"Qwen2.5-Coder-3B": "Qwen/Qwen2.5-Coder-3B",
|
15 |
}
|
16 |
|
17 |
# --- Model Loading Cache ---
|
|
|
18 |
loaded_models = {}
|
19 |
|
20 |
def get_model_and_tokenizer(model_name_key):
|
|
|
22 |
model_id = MODEL_OPTIONS[model_name_key]
|
23 |
print(f"Loading model: {model_id}...")
|
24 |
try:
|
|
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
model_id,
|
27 |
+
torch_dtype="auto",
|
28 |
+
device_map="auto",
|
29 |
+
token=HF_TOKEN
|
30 |
)
|
31 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
32 |
loaded_models[model_name_key] = (model, tokenizer)
|
33 |
print(f"Model {model_id} loaded successfully.")
|
34 |
except Exception as e:
|
35 |
print(f"Error loading model {model_id}: {e}")
|
36 |
+
if model_name_key in loaded_models:
|
|
|
37 |
del loaded_models[model_name_key]
|
38 |
raise gr.Error(f"Failed to load model {model_name_key}. Please check the model ID and your Hugging Face token permissions. Error: {e}")
|
39 |
return loaded_models[model_name_key]
|
40 |
|
41 |
# --- Inference Function ---
|
42 |
+
@spaces.GPU(duration=120) # <--- ADD THIS DECORATOR (adjust duration if needed)
|
|
|
43 |
def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
44 |
if not prompt_text:
|
45 |
return "Please enter a prompt."
|
|
|
49 |
try:
|
50 |
model, tokenizer = get_model_and_tokenizer(model_choice)
|
51 |
except Exception as e:
|
52 |
+
return str(e)
|
53 |
|
54 |
+
device = model.device
|
55 |
|
56 |
+
if "Chat" in model_choice:
|
57 |
messages = [
|
58 |
{"role": "system", "content": "You are a helpful assistant."},
|
59 |
{"role": "user", "content": prompt_text}
|
|
|
64 |
tokenize=False,
|
65 |
add_generation_prompt=True
|
66 |
)
|
67 |
+
except Exception as e:
|
68 |
print(f"Warning: Could not apply chat template for {model_choice}: {e}. Using prompt as is.")
|
69 |
input_text = prompt_text
|
70 |
+
else:
|
|
|
71 |
input_text = prompt_text
|
72 |
|
73 |
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
|
|
|
78 |
max_new_tokens=max_new_tokens,
|
79 |
temperature=temperature,
|
80 |
top_p=top_p,
|
81 |
+
do_sample=True
|
82 |
)
|
|
|
|
|
|
|
|
|
83 |
response_ids = generated_ids[0][model_inputs.input_ids.shape[-1]:]
|
84 |
response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
|
|
|
85 |
except Exception as e:
|
86 |
print(f"Error during generation with {model_choice}: {e}")
|
87 |
return f"Error generating response: {e}"
|
|
|
89 |
return response_text
|
90 |
|
91 |
# --- Gradio Interface ---
|
92 |
+
# (Rest of your Gradio code remains the same)
|
93 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
94 |
gr.Markdown("# LLM Coding & Math Experiment")
|
95 |
gr.Markdown("Query Qwen1.5-1.8B-Chat or Qwen Code models using ZeroGPU.")
|
|
|
98 |
model_dropdown = gr.Dropdown(
|
99 |
label="Select Model",
|
100 |
choices=list(MODEL_OPTIONS.keys()),
|
101 |
+
value=list(MODEL_OPTIONS.keys())[0]
|
102 |
)
|
103 |
with gr.Row():
|
104 |
prompt_input = gr.Textbox(label="Enter your prompt:", lines=4, placeholder="e.g., Write a Python function to calculate factorial, or What is the capital of France?")
|
|
|
113 |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature")
|
114 |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
|
115 |
|
|
|
|
|
116 |
submit_button.click(
|
117 |
fn=generate_response,
|
118 |
inputs=[prompt_input, model_dropdown, max_new_tokens_slider, temperature_slider, top_p_slider],
|
119 |
outputs=output_text,
|
120 |
+
api_name="generate"
|
121 |
)
|
122 |
|
123 |
gr.Markdown("## Notes:")
|
|
|
128 |
)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
+
# The logs show "Running on local URL: http://0.0.0.0:7860" which implies it's likely using the default Gradio launch.
|
132 |
+
# No changes needed here unless you want to explicitly set share=True for a public link when testing locally (not for Spaces deployment itself).
|
133 |
+
demo.launch()
|