Spaces:
Running
on
Zero
Running
on
Zero
add vote
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ def calculate_md5_from_binary(binary_data):
|
|
40 |
hash_md5.update(binary_data)
|
41 |
return hash_md5.hexdigest()
|
42 |
|
43 |
-
@spaces.GPU(duration=
|
44 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
45 |
global model, tokenizer
|
46 |
|
@@ -84,6 +84,7 @@ def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
|
84 |
|
85 |
return knowledge_base_name
|
86 |
|
|
|
87 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
88 |
global model, tokenizer
|
89 |
|
@@ -104,12 +105,6 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
104 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
105 |
|
106 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
107 |
-
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
108 |
-
f.write(json.dumps(
|
109 |
-
{
|
110 |
-
"query": query
|
111 |
-
}, indent=4, ensure_ascii=False
|
112 |
-
))
|
113 |
|
114 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
115 |
|
@@ -125,9 +120,57 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
125 |
|
126 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return images_topk
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
device = 'cuda'
|
132 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
133 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
@@ -136,9 +179,10 @@ model.to(device)
|
|
136 |
|
137 |
|
138 |
with gr.Blocks() as app:
|
139 |
-
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI
|
140 |
|
141 |
-
gr.Markdown("
|
|
|
142 |
|
143 |
with gr.Row():
|
144 |
file_input = gr.File(type="binary", label="Upload PDF")
|
@@ -148,16 +192,23 @@ with gr.Blocks() as app:
|
|
148 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
149 |
|
150 |
with gr.Row():
|
151 |
-
kb_id_input = gr.Text(label="Your Knowledge Base ID")
|
152 |
query_input = gr.Text(label="Your Queston")
|
153 |
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
154 |
retrieve_button = gr.Button("Retrieve")
|
155 |
|
|
|
|
|
|
|
|
|
156 |
with gr.Row():
|
157 |
images_output = gr.Gallery(label="Retrieved Pages")
|
158 |
|
159 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
160 |
|
|
|
|
|
|
|
161 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
162 |
|
163 |
app.launch()
|
|
|
40 |
hash_md5.update(binary_data)
|
41 |
return hash_md5.hexdigest()
|
42 |
|
43 |
+
@spaces.GPU(duration=100)
|
44 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
45 |
global model, tokenizer
|
46 |
|
|
|
84 |
|
85 |
return knowledge_base_name
|
86 |
|
87 |
+
# @spaces.GPU
|
88 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
89 |
global model, tokenizer
|
90 |
|
|
|
105 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
106 |
|
107 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
110 |
|
|
|
120 |
|
121 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
122 |
|
123 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
124 |
+
f.write(json.dumps(
|
125 |
+
{
|
126 |
+
"knowledge_base": knowledge_base,
|
127 |
+
"query": query,
|
128 |
+
"retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
|
129 |
+
}, indent=4, ensure_ascii=False
|
130 |
+
))
|
131 |
+
|
132 |
return images_topk
|
133 |
|
134 |
|
135 |
+
def upvote(knowledge_base, query):
|
136 |
+
global model, tokenizer
|
137 |
+
|
138 |
+
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
139 |
+
|
140 |
+
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
141 |
+
|
142 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
|
143 |
+
data = json.loads(f.read())
|
144 |
+
|
145 |
+
data["user_preference"] = "upvote"
|
146 |
+
|
147 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
|
148 |
+
f.write(json.dumps(data, indent=4, ensure_ascii=False))
|
149 |
+
|
150 |
+
print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
|
151 |
+
|
152 |
+
return
|
153 |
+
|
154 |
+
|
155 |
+
def downvote(knowledge_base, query):
|
156 |
+
global model, tokenizer
|
157 |
+
|
158 |
+
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
159 |
+
|
160 |
+
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
161 |
+
|
162 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
|
163 |
+
data = json.loads(f.read())
|
164 |
+
|
165 |
+
data["user_preference"] = "downvote"
|
166 |
+
|
167 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
|
168 |
+
f.write(json.dumps(data, indent=4, ensure_ascii=False))
|
169 |
+
|
170 |
+
print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
|
171 |
+
return
|
172 |
+
|
173 |
+
|
174 |
device = 'cuda'
|
175 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
176 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
179 |
|
180 |
|
181 |
with gr.Blocks() as app:
|
182 |
+
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI")
|
183 |
|
184 |
+
gr.Markdown("- We open-sourced our model at [RhapsodyAI/minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)")
|
185 |
+
gr.Markdown("- Currently we support PDF document with less than 50 pages, PDF over 50 pages will reach GPU time limit.")
|
186 |
|
187 |
with gr.Row():
|
188 |
file_input = gr.File(type="binary", label="Upload PDF")
|
|
|
192 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
193 |
|
194 |
with gr.Row():
|
195 |
+
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)")
|
196 |
query_input = gr.Text(label="Your Queston")
|
197 |
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
198 |
retrieve_button = gr.Button("Retrieve")
|
199 |
|
200 |
+
with gr.Row():
|
201 |
+
downvote_button = gr.Button("🤣Downvote")
|
202 |
+
upvote_button = gr.Button("🤗Upvote")
|
203 |
+
|
204 |
with gr.Row():
|
205 |
images_output = gr.Gallery(label="Retrieved Pages")
|
206 |
|
207 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
208 |
|
209 |
+
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
|
210 |
+
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
|
211 |
+
|
212 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
213 |
|
214 |
app.launch()
|