from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr model_ckpt = "booba-uz/english-uzbek-translation_v1" tokenizer = AutoTokenizer.from_pretrained(model_ckpt) model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt) tokenizer.src_lang = "en" tokenizer.tgt_lang = "uz" def translator(input_text): if not input_text.strip(): return "Iltimos Gap kiriting" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=256) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text demo = gr.Interface( fn=translator, inputs="text", outputs="text", ) demo.launch(debug=True)