File size: 2,849 Bytes
c91d9f3
c580f5e
 
 
 
b9c7982
c91d9f3
 
 
b9c7982
 
 
c91d9f3
 
 
 
 
 
 
 
 
 
 
 
 
d07e410
1de48dc
c580f5e
 
1de48dc
b9c7982
c91d9f3
 
 
 
dcd8e07
eb23a74
c91d9f3
dcd8e07
 
 
b9c7982
dcd8e07
 
b9c7982
dcd8e07
a1117d5
dcd8e07
 
 
eb23a74
 
c91d9f3
dcd8e07
dbffcc6
dcd8e07
 
c91d9f3
dcd8e07
 
 
 
c91d9f3
 
 
 
33262af
 
b9c7982
e7dd0dd
eb23a74
a1117d5
33262af
b9c7982
 
33262af
c91d9f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
from transformers import (
    PaliGemmaProcessor,
    PaliGemmaForConditionalGeneration,
)
from transformers.image_utils import load_image
import torch
import os
import spaces  # Import the spaces module
import requests
from io import BytesIO
from PIL import Image


def load_model():
    """Load PaliGemma2 model and processor with Hugging Face token."""

    token = os.getenv("HUGGINGFACEHUB_API_TOKEN")  # Retrieve token from environment variable

    if not token:
        raise ValueError(
            "Hugging Face API token not found. Please set it in the environment variables."
        )

    # Load the processor and model using the correct identifier
    model_id = "google/paligemma2-10b-pt-448"
    processor = PaliGemmaProcessor.from_pretrained(model_id, use_auth_token=token)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = PaliGemmaForConditionalGeneration.from_pretrained(
        model_id, torch_dtype=torch.bfloat16, use_auth_token=token
    ).to(device).eval()

    return processor, model


@spaces.GPU(duration=120)  # Increased timeout to 120 seconds
def process_image_and_text(image_pil, text_input, num_beams, temperature, seed):
    """Extract text from image using PaliGemma2."""
    try:
        processor, model = load_model()
        device = "cuda" if torch.cuda.is_available() else "cpu"

        # Load the image using load_image
        image = load_image(image_pil)

        # Use the provided text input
        model_inputs = processor(images=image, return_tensors="pt").to(
            device, dtype=torch.bfloat16
        )
        input_len = model_inputs["input_ids"].shape[-1]
        
        torch.manual_seed(seed) # Set random seed for reproducibility

        with torch.inference_mode():
            generation = model.generate(**model_inputs, max_new_tokens=500, do_sample=True, num_beams=num_beams, temperature=temperature)
            generation = generation[0][input_len:]
            decoded = processor.decode(generation, skip_special_tokens=True)

        return decoded
    except Exception as e:
        print(f"Error during GPU task: {e}")
        raise gr.Error(f"GPU task failed: {e}")


if __name__ == "__main__":
    iface = gr.Interface(
        fn=process_image_and_text,
        inputs=[
            gr.Image(type="pil", label="Upload an image"),
            gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Beams"),
            gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature"),
            gr.Number(label="Random Seed", value=0, precision=0),
        ],
        outputs=gr.Textbox(label="Generated Text"),
        title="PaliGemma2 Image and Text to Text",
        description="Upload an image and enter a text prompt. The model will generate text based on both.",
    )
    iface.launch()