Spaces:
Runtime error
Runtime error
Commit
·
d929725
1
Parent(s):
e834bcc
wip
Browse files- .gitignore +2 -0
- app.py +23 -91
- requirements.txt +8 -7
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*/__pycache__/
|
| 2 |
+
*.pyc
|
app.py
CHANGED
|
@@ -3,20 +3,16 @@ import os
|
|
| 3 |
import random
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
|
| 7 |
import cv2
|
| 8 |
import torch
|
| 9 |
import numpy as np
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
from transformers import CLIPVisionModelWithProjection
|
| 13 |
-
from diffusers.utils import load_image
|
| 14 |
from diffusers.models import ControlNetModel
|
| 15 |
-
|
| 16 |
from insightface.app import FaceAnalysis
|
| 17 |
-
|
| 18 |
-
# import glob
|
| 19 |
-
# import os
|
| 20 |
import io
|
| 21 |
import spaces
|
| 22 |
|
|
@@ -25,8 +21,8 @@ from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPip
|
|
| 25 |
import pandas as pd
|
| 26 |
import json
|
| 27 |
import requests
|
| 28 |
-
from PIL import Image
|
| 29 |
from io import BytesIO
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
|
@@ -128,25 +124,6 @@ def calc_emb_cropped(image, app):
|
|
| 128 |
|
| 129 |
return cropped_face_image
|
| 130 |
|
| 131 |
-
def process_benchmark_csv(banchmark_csv_path):
|
| 132 |
-
# Reading the first CSV file into a DataFrame
|
| 133 |
-
df = pd.read_csv(banchmark_csv_path)
|
| 134 |
-
|
| 135 |
-
# Drop any unnamed columns
|
| 136 |
-
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
| 137 |
-
|
| 138 |
-
# Drop columns with all NaN values
|
| 139 |
-
df.dropna(axis=1, how='all', inplace=True)
|
| 140 |
-
|
| 141 |
-
# Drop rows with all NaN values
|
| 142 |
-
df.dropna(axis=0, how='all', inplace=True)
|
| 143 |
-
|
| 144 |
-
df = df.loc[df['High resolution'] == 1]
|
| 145 |
-
|
| 146 |
-
df.reset_index(drop=True, inplace=True)
|
| 147 |
-
|
| 148 |
-
return df
|
| 149 |
-
|
| 150 |
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
|
| 151 |
if w_bilateral:
|
| 152 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
|
@@ -167,50 +144,45 @@ default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly
|
|
| 167 |
CURRENT_LORA_NAME = None
|
| 168 |
|
| 169 |
# Load face detection and recognition package
|
| 170 |
-
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
|
| 171 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 172 |
|
| 173 |
|
| 174 |
# download checkpoints
|
| 175 |
-
from huggingface_hub import hf_hub_download
|
| 176 |
|
| 177 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/config.json", local_dir="./checkpoints")
|
| 178 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
|
| 179 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 180 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
|
| 181 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/config.json", local_dir="./checkpoints")
|
| 182 |
-
|
| 183 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/3D_illustration/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 184 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Avatar_internlm/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 185 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Characters/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 186 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Storyboards/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 187 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Vangogh_Vanilla/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 188 |
|
|
|
|
| 189 |
|
| 190 |
-
#
|
| 191 |
-
# face_adapter = f'{base_dir}/pytorch_model.bin'
|
| 192 |
-
# controlnet_path = f'{base_dir}/controlnet'
|
| 193 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
| 194 |
controlnet_path = f"./checkpoints/controlnet"
|
| 195 |
-
|
| 196 |
-
|
| 197 |
base_model_path = f'briaai/BRIA-2.3'
|
| 198 |
resolution = 1024
|
| 199 |
|
|
|
|
| 200 |
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 201 |
-
|
| 202 |
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
|
| 203 |
-
|
| 204 |
-
|
| 205 |
controlnet = [controlnet_lnmks, controlnet_canny]
|
| 206 |
|
| 207 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 208 |
|
| 209 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 210 |
f"./checkpoints/image_encoder",
|
| 211 |
torch_dtype=torch.float16,
|
| 212 |
)
|
| 213 |
-
|
| 214 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 215 |
base_model_path,
|
| 216 |
controlnet=controlnet,
|
|
@@ -220,14 +192,13 @@ pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
|
| 220 |
|
| 221 |
pipe = pipe.to(device)
|
| 222 |
|
| 223 |
-
use_native_ip_adapter = True
|
| 224 |
-
pipe.use_native_ip_adapter=
|
| 225 |
|
| 226 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 227 |
|
| 228 |
clip_embeds=None
|
| 229 |
|
| 230 |
-
|
| 231 |
Loras_dict = {
|
| 232 |
"":"",
|
| 233 |
"Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
|
|
@@ -239,8 +210,6 @@ Loras_dict = {
|
|
| 239 |
|
| 240 |
lora_names = Loras_dict.keys()
|
| 241 |
|
| 242 |
-
lora_base_path = "./checkpoints/LoRAs"
|
| 243 |
-
|
| 244 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 245 |
if randomize_seed:
|
| 246 |
seed = random.randint(0, 99999999)
|
|
@@ -254,13 +223,11 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 254 |
if image_path is None:
|
| 255 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
| 256 |
|
| 257 |
-
# img = np.array(Image.open(image_path))[:,:,::-1]
|
| 258 |
img = Image.open(image_path)
|
| 259 |
|
| 260 |
-
face_image_orig = img
|
| 261 |
face_image_cropped = calc_emb_cropped(face_image_orig, app)
|
| 262 |
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
|
| 263 |
-
# face_image_padded = resize_img(face_image_cropped, max_side=resolution, min_side=resolution, pad_to_max_side=True)
|
| 264 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 265 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
| 266 |
face_emb = face_info['embedding']
|
|
@@ -305,19 +272,6 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 305 |
|
| 306 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 307 |
|
| 308 |
-
# if lora_name != "":
|
| 309 |
-
# lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
| 310 |
-
# pipe.load_lora_weights(lora_path)
|
| 311 |
-
# pipe.fuse_lora(lora_scale)
|
| 312 |
-
# pipe.enable_lora()
|
| 313 |
-
|
| 314 |
-
# lora_prefix = Loras_dict[lora_name]
|
| 315 |
-
|
| 316 |
-
# prompt = f"{lora_prefix} {prompt}"
|
| 317 |
-
|
| 318 |
-
# print("Using LoRA: ", lora_name)
|
| 319 |
-
|
| 320 |
-
|
| 321 |
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
|
| 322 |
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
|
| 323 |
pipe.disable_lora()
|
|
@@ -326,12 +280,13 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 326 |
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
|
| 327 |
|
| 328 |
if lora_name != "": # Load the new LoRA if specified
|
|
|
|
| 329 |
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
| 330 |
pipe.load_lora_weights(lora_path)
|
| 331 |
pipe.fuse_lora(lora_scale)
|
| 332 |
pipe.enable_lora()
|
| 333 |
|
| 334 |
-
lora_prefix = Loras_dict[lora_name]
|
| 335 |
|
| 336 |
print(f"Loaded new LoRA: {lora_name}")
|
| 337 |
|
|
@@ -339,7 +294,7 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 339 |
CURRENT_LORA_NAME = lora_name
|
| 340 |
|
| 341 |
if lora_name != "":
|
| 342 |
-
full_prompt = f"{
|
| 343 |
else:
|
| 344 |
full_prompt = prompt
|
| 345 |
|
|
@@ -348,9 +303,9 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 348 |
prompt = full_prompt,
|
| 349 |
negative_prompt = default_negative_prompt,
|
| 350 |
image_embeds = face_emb,
|
| 351 |
-
image = [face_kps, canny_img] if canny_scale>0.0 else face_kps,
|
| 352 |
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
|
| 353 |
-
control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
|
| 354 |
ip_adapter_scale = ip_adapter_scale,
|
| 355 |
num_inference_steps = num_steps,
|
| 356 |
guidance_scale = guidance_scale,
|
|
@@ -358,12 +313,8 @@ def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_imag
|
|
| 358 |
visual_prompt_embds = clip_embeds,
|
| 359 |
cross_attention_kwargs = None,
|
| 360 |
num_images_per_prompt=num_images,
|
| 361 |
-
).images
|
| 362 |
|
| 363 |
-
# if lora_name != "":
|
| 364 |
-
# pipe.disable_lora()
|
| 365 |
-
# pipe.unfuse_lora()
|
| 366 |
-
# pipe.unload_lora_weights()
|
| 367 |
|
| 368 |
gc.collect()
|
| 369 |
torch.cuda.empty_cache()
|
|
@@ -412,12 +363,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 412 |
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
| 413 |
|
| 414 |
submit = gr.Button("Submit", variant="primary")
|
| 415 |
-
|
| 416 |
-
# use_lcm = gr.Checkbox(
|
| 417 |
-
# label="Use LCM-LoRA to accelerate sampling", value=False,
|
| 418 |
-
# info="Reduces sampling steps significantly, but may decrease quality.",
|
| 419 |
-
# )
|
| 420 |
-
|
| 421 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 422 |
num_steps = gr.Slider(
|
| 423 |
label="Number of sample steps",
|
|
@@ -436,7 +382,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 436 |
num_images = gr.Slider(
|
| 437 |
label="Number of output images",
|
| 438 |
minimum=1,
|
| 439 |
-
maximum=
|
| 440 |
step=1,
|
| 441 |
value=1,
|
| 442 |
)
|
|
@@ -491,22 +437,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 491 |
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
|
| 492 |
outputs=[gallery]
|
| 493 |
)
|
| 494 |
-
|
| 495 |
-
# use_lcm.input(
|
| 496 |
-
# fn=toggle_lcm_ui,
|
| 497 |
-
# inputs=[use_lcm],
|
| 498 |
-
# outputs=[num_steps, guidance_scale],
|
| 499 |
-
# queue=False,
|
| 500 |
-
# )
|
| 501 |
-
|
| 502 |
-
# gr.Examples(
|
| 503 |
-
# examples=get_example(),
|
| 504 |
-
# inputs=[img_file],
|
| 505 |
-
# run_on_click=True,
|
| 506 |
-
# fn=run_example,
|
| 507 |
-
# outputs=[gallery],
|
| 508 |
-
# )
|
| 509 |
|
| 510 |
gr.Markdown(Footer)
|
| 511 |
|
|
|
|
| 512 |
demo.launch()
|
|
|
|
| 3 |
import random
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 6 |
import cv2
|
| 7 |
import torch
|
| 8 |
import numpy as np
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
from transformers import CLIPVisionModelWithProjection
|
|
|
|
| 12 |
from diffusers.models import ControlNetModel
|
| 13 |
+
|
| 14 |
from insightface.app import FaceAnalysis
|
| 15 |
+
|
|
|
|
|
|
|
| 16 |
import io
|
| 17 |
import spaces
|
| 18 |
|
|
|
|
| 21 |
import pandas as pd
|
| 22 |
import json
|
| 23 |
import requests
|
|
|
|
| 24 |
from io import BytesIO
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
| 26 |
|
| 27 |
|
| 28 |
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
|
|
|
| 124 |
|
| 125 |
return cropped_face_image
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
|
| 128 |
if w_bilateral:
|
| 129 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
|
|
|
| 144 |
CURRENT_LORA_NAME = None
|
| 145 |
|
| 146 |
# Load face detection and recognition package
|
| 147 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 148 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 149 |
|
| 150 |
|
| 151 |
# download checkpoints
|
|
|
|
| 152 |
|
| 153 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/config.json", local_dir="./checkpoints")
|
| 154 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
|
| 155 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
|
| 156 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
|
| 157 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/config.json", local_dir="./checkpoints")
|
| 158 |
+
# Download Lora weights
|
| 159 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/3D_illustration/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 160 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Avatar_internlm/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 161 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Characters/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 162 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Storyboards/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 163 |
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Vangogh_Vanilla/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
|
| 164 |
|
| 165 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 166 |
|
| 167 |
+
# ckpts paths
|
|
|
|
|
|
|
| 168 |
face_adapter = f"./checkpoints/ip-adapter.bin"
|
| 169 |
controlnet_path = f"./checkpoints/controlnet"
|
| 170 |
+
lora_base_path = "./checkpoints/LoRAs"
|
|
|
|
| 171 |
base_model_path = f'briaai/BRIA-2.3'
|
| 172 |
resolution = 1024
|
| 173 |
|
| 174 |
+
# Load ControlNet models
|
| 175 |
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
|
|
|
| 176 |
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
|
| 177 |
+
torch_dtype=torch.float16)
|
| 178 |
+
|
| 179 |
controlnet = [controlnet_lnmks, controlnet_canny]
|
| 180 |
|
|
|
|
| 181 |
|
| 182 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 183 |
f"./checkpoints/image_encoder",
|
| 184 |
torch_dtype=torch.float16,
|
| 185 |
)
|
|
|
|
| 186 |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
| 187 |
base_model_path,
|
| 188 |
controlnet=controlnet,
|
|
|
|
| 192 |
|
| 193 |
pipe = pipe.to(device)
|
| 194 |
|
| 195 |
+
# use_native_ip_adapter = True
|
| 196 |
+
pipe.use_native_ip_adapter=True
|
| 197 |
|
| 198 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 199 |
|
| 200 |
clip_embeds=None
|
| 201 |
|
|
|
|
| 202 |
Loras_dict = {
|
| 203 |
"":"",
|
| 204 |
"Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
|
|
|
|
| 210 |
|
| 211 |
lora_names = Loras_dict.keys()
|
| 212 |
|
|
|
|
|
|
|
| 213 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 214 |
if randomize_seed:
|
| 215 |
seed = random.randint(0, 99999999)
|
|
|
|
| 223 |
if image_path is None:
|
| 224 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
| 225 |
|
|
|
|
| 226 |
img = Image.open(image_path)
|
| 227 |
|
| 228 |
+
face_image_orig = img
|
| 229 |
face_image_cropped = calc_emb_cropped(face_image_orig, app)
|
| 230 |
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
|
|
|
|
| 231 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 232 |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
| 233 |
face_emb = face_info['embedding']
|
|
|
|
| 272 |
|
| 273 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
|
| 276 |
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
|
| 277 |
pipe.disable_lora()
|
|
|
|
| 280 |
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
|
| 281 |
|
| 282 |
if lora_name != "": # Load the new LoRA if specified
|
| 283 |
+
# pipe.enable_model_cpu_offload()
|
| 284 |
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
|
| 285 |
pipe.load_lora_weights(lora_path)
|
| 286 |
pipe.fuse_lora(lora_scale)
|
| 287 |
pipe.enable_lora()
|
| 288 |
|
| 289 |
+
# lora_prefix = Loras_dict[lora_name]
|
| 290 |
|
| 291 |
print(f"Loaded new LoRA: {lora_name}")
|
| 292 |
|
|
|
|
| 294 |
CURRENT_LORA_NAME = lora_name
|
| 295 |
|
| 296 |
if lora_name != "":
|
| 297 |
+
full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
|
| 298 |
else:
|
| 299 |
full_prompt = prompt
|
| 300 |
|
|
|
|
| 303 |
prompt = full_prompt,
|
| 304 |
negative_prompt = default_negative_prompt,
|
| 305 |
image_embeds = face_emb,
|
| 306 |
+
image = [face_kps, canny_img] if canny_scale > 0.0 else face_kps,
|
| 307 |
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
|
| 308 |
+
# control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
|
| 309 |
ip_adapter_scale = ip_adapter_scale,
|
| 310 |
num_inference_steps = num_steps,
|
| 311 |
guidance_scale = guidance_scale,
|
|
|
|
| 313 |
visual_prompt_embds = clip_embeds,
|
| 314 |
cross_attention_kwargs = None,
|
| 315 |
num_images_per_prompt=num_images,
|
| 316 |
+
).images
|
| 317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
gc.collect()
|
| 320 |
torch.cuda.empty_cache()
|
|
|
|
| 363 |
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
|
| 364 |
|
| 365 |
submit = gr.Button("Submit", variant="primary")
|
| 366 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 368 |
num_steps = gr.Slider(
|
| 369 |
label="Number of sample steps",
|
|
|
|
| 382 |
num_images = gr.Slider(
|
| 383 |
label="Number of output images",
|
| 384 |
minimum=1,
|
| 385 |
+
maximum=2,
|
| 386 |
step=1,
|
| 387 |
value=1,
|
| 388 |
)
|
|
|
|
| 437 |
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
|
| 438 |
outputs=[gallery]
|
| 439 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
|
| 441 |
gr.Markdown(Footer)
|
| 442 |
|
| 443 |
+
# demo.launch(server_port=7865)
|
| 444 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
-
torch
|
| 3 |
-
torchvision
|
| 4 |
-
transformers
|
| 5 |
-
accelerate
|
| 6 |
ftfy
|
| 7 |
numpy
|
| 8 |
matplotlib
|
| 9 |
uuid
|
| 10 |
opencv-python
|
| 11 |
-
diffusers==0.
|
| 12 |
spaces
|
| 13 |
-
insightface
|
| 14 |
-
|
|
|
|
| 15 |
peft==0.12.0
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
+
torch==2.4.0
|
| 3 |
+
torchvision==0.19.0
|
| 4 |
+
transformers==4.43.4
|
| 5 |
+
accelerate==0.33.0
|
| 6 |
ftfy
|
| 7 |
numpy
|
| 8 |
matplotlib
|
| 9 |
uuid
|
| 10 |
opencv-python
|
| 11 |
+
diffusers==0.29.2
|
| 12 |
spaces
|
| 13 |
+
insightface==0.7.3
|
| 14 |
+
onnx==1.16.2
|
| 15 |
+
onnxruntime==1.18.1
|
| 16 |
peft==0.12.0
|