Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +195 -136
- hardware_config.json +5 -5
- run_transformers_training.py +203 -195
- transformers_config.json +2 -2
app.py
CHANGED
@@ -1,162 +1,221 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
-
import subprocess
|
4 |
import sys
|
5 |
import json
|
6 |
-
import
|
7 |
-
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
"
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
env_info["GPU"]["Memory (GB)"] = round(torch.cuda.get_device_properties(0).total_memory / (1024**3), 2)
|
51 |
|
52 |
-
return
|
53 |
|
54 |
-
def
|
55 |
-
"""
|
56 |
try:
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
# Start
|
|
|
61 |
process = subprocess.Popen(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
bufsize=1
|
67 |
)
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
-
|
77 |
-
return 1
|
78 |
|
79 |
-
def
|
80 |
-
|
81 |
-
"""Start the training process with the specified parameters."""
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
"
|
96 |
-
})
|
97 |
-
|
98 |
-
# Update hub settings if username is available
|
99 |
-
if os.environ.get("HF_USERNAME"):
|
100 |
-
config["huggingface_hub"].update({
|
101 |
-
"hub_model_id": f"{os.environ['HF_USERNAME']}/Phi4-Cognitive-Science"
|
102 |
-
})
|
103 |
-
|
104 |
-
# Save updated config
|
105 |
-
with open(os.path.join(current_dir, "transformers_config.json"), "w") as f:
|
106 |
-
json.dump(config, f, indent=4)
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
return "
|
|
|
114 |
except Exception as e:
|
115 |
-
return f"Error
|
116 |
|
117 |
-
|
118 |
-
|
|
|
119 |
|
120 |
-
with gr.
|
121 |
-
with gr.
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
num_train_epochs = gr.Slider(minimum=1, maximum=5, value=3, step=1,
|
131 |
-
label="Number of Epochs")
|
132 |
-
per_device_train_batch_size = gr.Slider(minimum=4, maximum=24, value=12, step=4,
|
133 |
-
label="Per Device Train Batch Size (Unsloth Optimized)")
|
134 |
-
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=8, value=4, step=1,
|
135 |
-
label="Gradient Accumulation Steps")
|
136 |
-
|
137 |
start_btn = gr.Button("Start Training", variant="primary")
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
|
|
160 |
if __name__ == "__main__":
|
161 |
-
|
162 |
-
demo.launch()
|
|
|
|
|
1 |
import os
|
|
|
2 |
import sys
|
3 |
import json
|
4 |
+
import logging
|
5 |
+
import gradio as gr
|
6 |
+
from pathlib import Path
|
7 |
+
import subprocess
|
8 |
+
import time
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO,
|
14 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
15 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
16 |
+
)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Configuration paths
|
20 |
+
CONFIG_DIR = "."
|
21 |
+
TRANSFORMERS_CONFIG = os.path.join(CONFIG_DIR, "transformers_config.json")
|
22 |
+
HARDWARE_CONFIG = os.path.join(CONFIG_DIR, "hardware_config.json")
|
23 |
+
DATASET_CONFIG = os.path.join(CONFIG_DIR, "dataset_config.json")
|
24 |
+
|
25 |
+
def load_config(config_path):
|
26 |
+
"""Load configuration from JSON file."""
|
27 |
+
try:
|
28 |
+
if os.path.exists(config_path):
|
29 |
+
with open(config_path, 'r') as f:
|
30 |
+
return json.load(f)
|
31 |
+
else:
|
32 |
+
logger.error(f"Config file not found: {config_path}")
|
33 |
+
return None
|
34 |
+
except Exception as e:
|
35 |
+
logger.error(f"Error loading config: {str(e)}")
|
36 |
+
return None
|
37 |
|
38 |
+
def display_config():
|
39 |
+
"""Display current training configuration."""
|
40 |
+
transformers_config = load_config(TRANSFORMERS_CONFIG)
|
41 |
+
hardware_config = load_config(HARDWARE_CONFIG)
|
42 |
+
dataset_config = load_config(DATASET_CONFIG)
|
43 |
+
|
44 |
+
if not all([transformers_config, hardware_config, dataset_config]):
|
45 |
+
return "Error loading configuration files."
|
46 |
+
|
47 |
+
# Extract key parameters
|
48 |
+
model_name = transformers_config.get("model", {}).get("name", "")
|
49 |
+
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
50 |
+
batch_size = transformers_config.get("training", {}).get("per_device_train_batch_size", 0)
|
51 |
+
gradient_accum = transformers_config.get("training", {}).get("gradient_accumulation_steps", 0)
|
52 |
+
lr = transformers_config.get("training", {}).get("learning_rate", 0)
|
53 |
+
epochs = transformers_config.get("training", {}).get("num_train_epochs", 0)
|
54 |
+
gpu_count = hardware_config.get("specs", {}).get("gpu_count", 0)
|
55 |
+
gpu_type = hardware_config.get("specs", {}).get("gpu_type", "")
|
56 |
+
|
57 |
+
config_info = f"""
|
58 |
+
## Current Training Configuration
|
59 |
+
|
60 |
+
**Model**: {model_name}
|
61 |
+
**Dataset**: {dataset_name}
|
62 |
+
|
63 |
+
**Training Parameters**:
|
64 |
+
- Learning Rate: {lr}
|
65 |
+
- Epochs: {epochs}
|
66 |
+
- Batch Size/GPU: {batch_size}
|
67 |
+
- Gradient Accumulation: {gradient_accum}
|
68 |
+
- Effective Batch Size: {batch_size * gradient_accum * gpu_count}
|
69 |
+
|
70 |
+
**Hardware**:
|
71 |
+
- GPUs: {gpu_count}x {gpu_type}
|
72 |
+
- Flash Attention: {hardware_config.get("memory_optimization", {}).get("use_flash_attention", False)}
|
73 |
+
- Gradient Checkpointing: {hardware_config.get("memory_optimization", {}).get("use_gradient_checkpointing", False)}
|
74 |
|
75 |
+
**Pre-quantized 4-bit Training**: Enabled
|
76 |
+
"""
|
|
|
77 |
|
78 |
+
return config_info
|
79 |
|
80 |
+
def start_training():
|
81 |
+
"""Start the training process."""
|
82 |
try:
|
83 |
+
# Check if already running
|
84 |
+
if os.path.exists("training.pid"):
|
85 |
+
with open("training.pid", "r") as f:
|
86 |
+
pid = f.read().strip()
|
87 |
+
try:
|
88 |
+
# Check if process is still running
|
89 |
+
os.kill(int(pid), 0)
|
90 |
+
return f"Training is already running with PID {pid}"
|
91 |
+
except OSError:
|
92 |
+
# Process not running, remove stale PID file
|
93 |
+
os.remove("training.pid")
|
94 |
|
95 |
+
# Start training in background
|
96 |
+
cmd = "python run_transformers_training.py"
|
97 |
process = subprocess.Popen(
|
98 |
+
cmd,
|
99 |
+
shell=True,
|
100 |
+
stdout=open('training.log', 'a'),
|
101 |
+
stderr=subprocess.STDOUT
|
|
|
102 |
)
|
103 |
|
104 |
+
# Save PID
|
105 |
+
with open("training.pid", "w") as f:
|
106 |
+
f.write(str(process.pid))
|
107 |
|
108 |
+
# Log start time
|
109 |
+
with open("training_history.log", "a") as f:
|
110 |
+
f.write(f"{datetime.now().isoformat()}: Training started (PID: {process.pid})\n")
|
111 |
+
|
112 |
+
return f"Training started with PID {process.pid}. Check status for updates."
|
113 |
+
|
114 |
except Exception as e:
|
115 |
+
return f"Error starting training: {str(e)}"
|
|
|
116 |
|
117 |
+
def check_training_status():
|
118 |
+
"""Check the status of training."""
|
|
|
119 |
try:
|
120 |
+
# Check if training is running
|
121 |
+
if os.path.exists("training.pid"):
|
122 |
+
with open("training.pid", "r") as f:
|
123 |
+
pid = f.read().strip()
|
124 |
+
try:
|
125 |
+
# Check if process is still running
|
126 |
+
os.kill(int(pid), 0)
|
127 |
+
status = f"Training is running with PID {pid}"
|
128 |
+
except OSError:
|
129 |
+
status = "Training process has stopped"
|
130 |
+
os.remove("training.pid")
|
131 |
+
else:
|
132 |
+
status = "No training process is currently running"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# Get last lines from training log
|
135 |
+
log_content = "No training log available"
|
136 |
+
if os.path.exists("training.log"):
|
137 |
+
with open("training.log", "r") as f:
|
138 |
+
lines = f.readlines()
|
139 |
+
log_content = "".join(lines[-20:]) if lines else "Log file is empty"
|
140 |
|
141 |
+
return f"{status}\n\n**Recent Log:**\n```\n{log_content}\n```"
|
142 |
+
|
143 |
except Exception as e:
|
144 |
+
return f"Error checking status: {str(e)}"
|
145 |
|
146 |
+
# Create the Gradio interface
|
147 |
+
with gr.Blocks(title="Phi-4 Unsloth Training", theme=gr.themes.Soft(primary_hue="blue")) as app:
|
148 |
+
gr.Markdown("# Phi-4 Unsloth 4-bit Training Interface")
|
149 |
|
150 |
+
with gr.Tabs():
|
151 |
+
with gr.TabItem("Configuration"):
|
152 |
+
config_output = gr.Markdown(display_config())
|
153 |
+
refresh_btn = gr.Button("Refresh Configuration")
|
154 |
+
refresh_btn.click(fn=display_config, outputs=config_output)
|
155 |
+
|
156 |
+
with gr.TabItem("Training Control"):
|
157 |
+
gr.Markdown("## Training Management")
|
158 |
+
|
159 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
start_btn = gr.Button("Start Training", variant="primary")
|
161 |
+
check_btn = gr.Button("Check Status")
|
162 |
+
|
163 |
+
status_output = gr.Markdown("Click 'Check Status' to see training progress")
|
164 |
+
|
165 |
+
start_btn.click(fn=start_training, outputs=status_output)
|
166 |
+
check_btn.click(fn=check_training_status, outputs=status_output)
|
167 |
+
|
168 |
+
# Auto-refresh status
|
169 |
+
gr.HTML('''
|
170 |
+
<script>
|
171 |
+
let intervalId;
|
172 |
+
|
173 |
+
document.addEventListener('DOMContentLoaded', function() {
|
174 |
+
// Find the "Check Status" button
|
175 |
+
const buttons = Array.from(document.querySelectorAll('button'));
|
176 |
+
const checkBtn = buttons.find(btn => btn.textContent.includes('Check Status'));
|
177 |
+
|
178 |
+
// Set up interval to click the button every 30 seconds
|
179 |
+
if (checkBtn) {
|
180 |
+
intervalId = setInterval(() => {
|
181 |
+
checkBtn.click();
|
182 |
+
}, 30000);
|
183 |
+
}
|
184 |
+
});
|
185 |
+
|
186 |
+
// Clean up on tab/window close
|
187 |
+
window.addEventListener('beforeunload', function() {
|
188 |
+
clearInterval(intervalId);
|
189 |
+
});
|
190 |
+
</script>
|
191 |
+
''')
|
192 |
|
193 |
+
with gr.TabItem("Help"):
|
194 |
+
gr.Markdown("""
|
195 |
+
## Phi-4 Unsloth Training Help
|
196 |
+
|
197 |
+
This interface allows you to manage training of the Phi-4 model with Unsloth 4-bit optimizations.
|
198 |
+
|
199 |
+
### Quick Start
|
200 |
+
|
201 |
+
1. Review the configuration in the Configuration tab
|
202 |
+
2. Click "Start Training" to begin the process
|
203 |
+
3. Use "Check Status" to monitor progress
|
204 |
+
|
205 |
+
### Notes
|
206 |
+
|
207 |
+
- Training uses the pre-quantized model `unsloth/phi-4-unsloth-bnb-4bit`
|
208 |
+
- The process maintains paper order and handles metadata appropriately
|
209 |
+
- Training progress will be regularly saved to HuggingFace Hub
|
210 |
+
|
211 |
+
### Troubleshooting
|
212 |
+
|
213 |
+
If training stops unexpectedly:
|
214 |
+
- Check the logs for out-of-memory errors
|
215 |
+
- Verify the VRAM usage on each GPU
|
216 |
+
- Check for CUDA version compatibility
|
217 |
+
""")
|
218 |
|
219 |
+
# Launch the app
|
220 |
if __name__ == "__main__":
|
221 |
+
app.launch()
|
|
hardware_config.json
CHANGED
@@ -9,13 +9,13 @@
|
|
9 |
"ram": 186
|
10 |
},
|
11 |
"training_optimizations": {
|
12 |
-
"per_device_batch_size":
|
13 |
"gradient_accumulation_steps": 2,
|
14 |
-
"effective_batch_size":
|
15 |
"memory_optimizations": {
|
16 |
"use_gradient_checkpointing": true,
|
17 |
"pin_memory": true,
|
18 |
-
"num_workers":
|
19 |
"use_flash_attention": true
|
20 |
},
|
21 |
"distributed_settings": {
|
@@ -41,9 +41,9 @@
|
|
41 |
"mixed_precision": "bf16",
|
42 |
"num_gpus": 4,
|
43 |
"training_parameters": {
|
44 |
-
"per_device_train_batch_size":
|
45 |
"gradient_accumulation_steps": 2,
|
46 |
-
"dataloader_num_workers":
|
47 |
"dataloader_pin_memory": true,
|
48 |
"gradient_checkpointing": true,
|
49 |
"max_grad_norm": 1.0
|
|
|
9 |
"ram": 186
|
10 |
},
|
11 |
"training_optimizations": {
|
12 |
+
"per_device_batch_size": 24,
|
13 |
"gradient_accumulation_steps": 2,
|
14 |
+
"effective_batch_size": 192,
|
15 |
"memory_optimizations": {
|
16 |
"use_gradient_checkpointing": true,
|
17 |
"pin_memory": true,
|
18 |
+
"num_workers": 4,
|
19 |
"use_flash_attention": true
|
20 |
},
|
21 |
"distributed_settings": {
|
|
|
41 |
"mixed_precision": "bf16",
|
42 |
"num_gpus": 4,
|
43 |
"training_parameters": {
|
44 |
+
"per_device_train_batch_size": 24,
|
45 |
"gradient_accumulation_steps": 2,
|
46 |
+
"dataloader_num_workers": 4,
|
47 |
"dataloader_pin_memory": true,
|
48 |
"gradient_checkpointing": true,
|
49 |
"max_grad_norm": 1.0
|
run_transformers_training.py
CHANGED
@@ -127,13 +127,12 @@ def parse_args():
|
|
127 |
def load_model_and_tokenizer(config):
|
128 |
"""Load model and tokenizer with proper error handling and optimizations."""
|
129 |
try:
|
130 |
-
if
|
131 |
-
logger.info("Using Unsloth optimizations")
|
132 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
133 |
model_name=config.get("model_name"),
|
134 |
max_seq_length=config.get("max_seq_length", 2048),
|
135 |
dtype=None, # Let Unsloth choose optimal dtype
|
136 |
-
load_in_4bit=config.get("load_in_4bit", True),
|
137 |
device_map="auto",
|
138 |
)
|
139 |
|
@@ -151,49 +150,14 @@ def load_model_and_tokenizer(config):
|
|
151 |
)
|
152 |
logger.info("Unsloth optimizations applied successfully")
|
153 |
else:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# Standard quantization setup
|
158 |
-
quantization_config = None
|
159 |
-
if config.get("load_in_4bit", False) and bitsandbytes_available:
|
160 |
-
logger.info("Using 4-bit quantization")
|
161 |
-
quantization_config = BitsAndBytesConfig(
|
162 |
-
load_in_4bit=True,
|
163 |
-
bnb_4bit_quant_type="nf4",
|
164 |
-
bnb_4bit_compute_dtype=torch.float16,
|
165 |
-
bnb_4bit_use_double_quant=True
|
166 |
-
)
|
167 |
-
|
168 |
-
# Load model with standard settings
|
169 |
-
model = AutoModelForCausalLM.from_pretrained(
|
170 |
-
config.get("model_name"),
|
171 |
-
quantization_config=quantization_config,
|
172 |
-
device_map="auto",
|
173 |
-
trust_remote_code=config.get("trust_remote_code", True),
|
174 |
-
use_cache=not config.get("gradient_checkpointing", True)
|
175 |
-
)
|
176 |
-
|
177 |
-
# Load tokenizer
|
178 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
179 |
-
config.get("model_name"),
|
180 |
-
use_fast=config.get("use_fast_tokenizer", True),
|
181 |
-
trust_remote_code=config.get("trust_remote_code", True)
|
182 |
-
)
|
183 |
-
|
184 |
-
# Enable gradient checkpointing if requested
|
185 |
-
if config.get("gradient_checkpointing", True) and hasattr(model, "gradient_checkpointing_enable"):
|
186 |
-
model.gradient_checkpointing_enable(use_reentrant=False)
|
187 |
-
logger.info("Gradient checkpointing enabled")
|
188 |
|
189 |
# Set up tokenizer settings
|
190 |
if config.get("chat_template"):
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
else:
|
195 |
-
tokenizer.chat_template = config.get("chat_template")
|
196 |
-
logger.info(f"Set chat template to {config.get('chat_template')}")
|
197 |
|
198 |
# Ensure proper token settings
|
199 |
if tokenizer.pad_token_id is None:
|
@@ -210,33 +174,191 @@ def load_dataset_with_mapping(dataset_config):
|
|
210 |
"""Load and prepare dataset with proper column mapping."""
|
211 |
try:
|
212 |
# Load dataset
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
# Sort dataset if required
|
226 |
-
|
227 |
-
|
|
|
228 |
dataset = dataset.sort("id")
|
229 |
|
230 |
-
# Log first few IDs to verify sorting
|
231 |
-
sample_ids = [example[
|
232 |
logger.info(f"First few IDs after sorting: {sample_ids}")
|
233 |
|
|
|
234 |
return dataset
|
235 |
-
|
236 |
except Exception as e:
|
237 |
logger.error(f"Error loading dataset: {str(e)}")
|
238 |
raise
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
def main():
|
241 |
# Set up logging
|
242 |
logger.info("Starting training process")
|
@@ -322,148 +444,34 @@ def main():
|
|
322 |
logger.error(f"Error setting up PEFT: {e}")
|
323 |
return 1
|
324 |
|
325 |
-
# Load dataset
|
|
|
326 |
try:
|
327 |
-
dataset =
|
328 |
-
logger.info("Dataset loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
except Exception as e:
|
330 |
-
logger.error(f"Error loading dataset: {e}")
|
331 |
return 1
|
332 |
|
333 |
-
# Simple data collator that processes each entry independently
|
334 |
-
class SimpleDataCollator:
|
335 |
-
def __init__(self, tokenizer):
|
336 |
-
self.tokenizer = tokenizer
|
337 |
-
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
338 |
-
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
339 |
-
self.prompt_counter = 0
|
340 |
-
self.paper_counters = {}
|
341 |
-
logger.info("SimpleDataCollator initialized - using phi-4 chat format")
|
342 |
-
|
343 |
-
def format_phi_chat(self, messages):
|
344 |
-
"""Format messages according to phi-4's chat template."""
|
345 |
-
formatted_chat = ""
|
346 |
-
for message in messages:
|
347 |
-
# Extract role and content
|
348 |
-
if isinstance(message, dict):
|
349 |
-
role = message.get("role", "").lower()
|
350 |
-
content = message.get("content", "")
|
351 |
-
else:
|
352 |
-
role = getattr(message, "role", "").lower()
|
353 |
-
content = getattr(message, "content", "")
|
354 |
-
|
355 |
-
# Format based on role
|
356 |
-
if role == "human" or role == "user":
|
357 |
-
formatted_chat += f"Human: {content}\n\n"
|
358 |
-
elif role == "assistant":
|
359 |
-
formatted_chat += f"Assistant: {content}\n\n"
|
360 |
-
elif role == "system":
|
361 |
-
# For system messages, we prepend them with a special format
|
362 |
-
formatted_chat = f"System: {content}\n\n" + formatted_chat
|
363 |
-
else:
|
364 |
-
logger.warning(f"Unknown role '{role}' - treating as system message")
|
365 |
-
formatted_chat += f"System: {content}\n\n"
|
366 |
-
|
367 |
-
return formatted_chat.strip()
|
368 |
-
|
369 |
-
def __call__(self, features):
|
370 |
-
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
371 |
-
|
372 |
-
for example in features:
|
373 |
-
try:
|
374 |
-
# Get ID and conversation fields
|
375 |
-
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
|
376 |
-
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
|
377 |
-
|
378 |
-
if not conversation:
|
379 |
-
self.stats["skipped"] += 1
|
380 |
-
continue
|
381 |
-
|
382 |
-
# Increment counters
|
383 |
-
self.prompt_counter += 1
|
384 |
-
if paper_id not in self.paper_counters:
|
385 |
-
self.paper_counters[paper_id] = 0
|
386 |
-
self.paper_counters[paper_id] += 1
|
387 |
-
|
388 |
-
# Add metadata as system message
|
389 |
-
metadata = {
|
390 |
-
"role": "system",
|
391 |
-
"content": f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}"
|
392 |
-
}
|
393 |
-
|
394 |
-
# Format the conversation using phi-4's chat template
|
395 |
-
formatted_content = self.format_phi_chat([metadata] + conversation)
|
396 |
-
|
397 |
-
# Tokenize with the model's chat template
|
398 |
-
inputs = self.tokenizer(
|
399 |
-
formatted_content,
|
400 |
-
add_special_tokens=True,
|
401 |
-
truncation=True,
|
402 |
-
max_length=model_config.get("max_seq_length", 2048),
|
403 |
-
return_tensors=None, # Return list instead of tensors
|
404 |
-
)
|
405 |
-
|
406 |
-
input_ids = inputs["input_ids"]
|
407 |
-
attention_mask = inputs["attention_mask"]
|
408 |
-
|
409 |
-
if len(input_ids) > 0:
|
410 |
-
# For causal language modeling, labels are the same as inputs
|
411 |
-
labels = input_ids.copy()
|
412 |
-
|
413 |
-
batch["input_ids"].append(input_ids)
|
414 |
-
batch["attention_mask"].append(attention_mask)
|
415 |
-
batch["labels"].append(labels)
|
416 |
-
|
417 |
-
self.stats["processed"] += 1
|
418 |
-
self.stats["total_tokens"] += len(input_ids)
|
419 |
-
|
420 |
-
# Debug logging for first few examples
|
421 |
-
if self.stats["processed"] <= 3:
|
422 |
-
logger.info(f"Example {self.stats['processed']} format:")
|
423 |
-
logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
|
424 |
-
logger.info(f"Token count: {len(input_ids)}")
|
425 |
-
logger.info(f"Content preview:\n{formatted_content[:500]}...")
|
426 |
-
else:
|
427 |
-
self.stats["skipped"] += 1
|
428 |
-
|
429 |
-
except Exception as e:
|
430 |
-
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
431 |
-
self.stats["skipped"] += 1
|
432 |
-
continue
|
433 |
-
|
434 |
-
# Handle empty batches
|
435 |
-
if not batch["input_ids"]:
|
436 |
-
logger.warning("Empty batch, returning dummy tensors")
|
437 |
-
return {
|
438 |
-
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
439 |
-
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
440 |
-
"labels": torch.zeros((1, 1), dtype=torch.long)
|
441 |
-
}
|
442 |
-
|
443 |
-
# Pad the batch
|
444 |
-
max_length = max(len(ids) for ids in batch["input_ids"])
|
445 |
-
|
446 |
-
for i in range(len(batch["input_ids"])):
|
447 |
-
padding_length = max_length - len(batch["input_ids"][i])
|
448 |
-
if padding_length > 0:
|
449 |
-
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
450 |
-
batch["attention_mask"][i].extend([0] * padding_length)
|
451 |
-
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding
|
452 |
-
|
453 |
-
# Convert to tensors
|
454 |
-
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
455 |
-
|
456 |
-
# Log stats periodically
|
457 |
-
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
|
458 |
-
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
459 |
-
f"skipped={self.stats['skipped']}, "
|
460 |
-
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
461 |
-
f"unique_papers={len(self.paper_counters)}")
|
462 |
-
|
463 |
-
return batch
|
464 |
-
|
465 |
# Create data collator
|
466 |
-
data_collator = SimpleDataCollator(tokenizer)
|
467 |
|
468 |
# Simple logging callback
|
469 |
class LoggingCallback(TrainerCallback):
|
|
|
127 |
def load_model_and_tokenizer(config):
|
128 |
"""Load model and tokenizer with proper error handling and optimizations."""
|
129 |
try:
|
130 |
+
if unsloth_available:
|
131 |
+
logger.info("Using Unsloth optimizations with pre-quantized model")
|
132 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
133 |
model_name=config.get("model_name"),
|
134 |
max_seq_length=config.get("max_seq_length", 2048),
|
135 |
dtype=None, # Let Unsloth choose optimal dtype
|
|
|
136 |
device_map="auto",
|
137 |
)
|
138 |
|
|
|
150 |
)
|
151 |
logger.info("Unsloth optimizations applied successfully")
|
152 |
else:
|
153 |
+
logger.error("Unsloth is required for training with pre-quantized model")
|
154 |
+
raise ImportError("Unsloth is required for this training setup")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
# Set up tokenizer settings
|
157 |
if config.get("chat_template"):
|
158 |
+
chat_template = get_chat_template("phi")
|
159 |
+
tokenizer.chat_template = chat_template
|
160 |
+
logger.info("Set phi chat template")
|
|
|
|
|
|
|
161 |
|
162 |
# Ensure proper token settings
|
163 |
if tokenizer.pad_token_id is None:
|
|
|
174 |
"""Load and prepare dataset with proper column mapping."""
|
175 |
try:
|
176 |
# Load dataset
|
177 |
+
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
178 |
+
dataset_split = dataset_config.get("dataset", {}).get("split", "train")
|
179 |
+
|
180 |
+
if not dataset_name:
|
181 |
+
raise ValueError("Dataset name not provided in configuration")
|
182 |
|
183 |
+
logger.info(f"Loading dataset {dataset_name}, split {dataset_split}")
|
184 |
+
dataset = load_dataset(dataset_name, split=dataset_split)
|
185 |
+
|
186 |
+
# Map columns if specified
|
187 |
+
column_mapping = dataset_config.get("dataset", {}).get("column_mapping", {})
|
188 |
+
if column_mapping:
|
189 |
+
logger.info(f"Applying column mapping: {column_mapping}")
|
190 |
+
|
191 |
+
# Rename columns according to mapping
|
192 |
+
for target, source in column_mapping.items():
|
193 |
+
if source in dataset.column_names:
|
194 |
+
dataset = dataset.rename_column(source, target)
|
195 |
|
196 |
# Sort dataset if required
|
197 |
+
sort_by_id = dataset_config.get("dataset", {}).get("processing", {}).get("sort_by_id", False)
|
198 |
+
if sort_by_id and "id" in dataset.column_names:
|
199 |
+
logger.info("Sorting dataset by ID")
|
200 |
dataset = dataset.sort("id")
|
201 |
|
202 |
+
# Log the first few IDs to verify sorting
|
203 |
+
sample_ids = [example['id'] for example in dataset.select(range(min(5, len(dataset))))]
|
204 |
logger.info(f"First few IDs after sorting: {sample_ids}")
|
205 |
|
206 |
+
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
|
207 |
return dataset
|
208 |
+
|
209 |
except Exception as e:
|
210 |
logger.error(f"Error loading dataset: {str(e)}")
|
211 |
raise
|
212 |
|
213 |
+
def format_phi_chat(messages, dataset_config):
|
214 |
+
"""Format messages according to phi-4's chat template and dataset config."""
|
215 |
+
formatted_chat = ""
|
216 |
+
|
217 |
+
# Get role templates from config
|
218 |
+
roles = dataset_config.get("data_formatting", {}).get("roles", {
|
219 |
+
"system": "System: {content}\n\n",
|
220 |
+
"human": "Human: {content}\n\n",
|
221 |
+
"assistant": "Assistant: {content}\n\n"
|
222 |
+
})
|
223 |
+
|
224 |
+
# Handle research introduction metadata first
|
225 |
+
metadata = next((msg for msg in messages if "[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
|
226 |
+
if metadata:
|
227 |
+
system_template = roles.get("system", "System: {content}\n\n")
|
228 |
+
formatted_chat = system_template.format(content=metadata['content'])
|
229 |
+
messages = [msg for msg in messages if msg != metadata]
|
230 |
+
|
231 |
+
# Process remaining messages
|
232 |
+
for message in messages:
|
233 |
+
role = message.get("role", "").lower()
|
234 |
+
content = message.get("content", "")
|
235 |
+
|
236 |
+
# Format based on role
|
237 |
+
if role == "human" or role == "user":
|
238 |
+
template = roles.get("human", "Human: {content}\n\n")
|
239 |
+
formatted_chat += template.format(content=content)
|
240 |
+
elif role == "assistant":
|
241 |
+
template = roles.get("assistant", "Assistant: {content}\n\n")
|
242 |
+
formatted_chat += template.format(content=content)
|
243 |
+
elif role == "system":
|
244 |
+
# For system messages, prepend them
|
245 |
+
template = roles.get("system", "System: {content}\n\n")
|
246 |
+
formatted_chat = template.format(content=content) + formatted_chat
|
247 |
+
|
248 |
+
return formatted_chat.strip()
|
249 |
+
|
250 |
+
class SimpleDataCollator:
|
251 |
+
def __init__(self, tokenizer, dataset_config):
|
252 |
+
self.tokenizer = tokenizer
|
253 |
+
self.dataset_config = dataset_config
|
254 |
+
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
255 |
+
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
256 |
+
self.prompt_counter = 0
|
257 |
+
self.paper_counters = {}
|
258 |
+
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
|
259 |
+
self.include_metadata = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("include_paper_id", True)
|
260 |
+
self.include_chunk = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("include_chunk_number", True)
|
261 |
+
self.metadata_format = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("metadata_format", "Paper ID: {paper_id} | Chunk: {chunk_number}")
|
262 |
+
logger.info(f"SimpleDataCollator initialized - using phi-4 chat format with max_seq_length={self.max_seq_length}")
|
263 |
+
|
264 |
+
def __call__(self, features):
|
265 |
+
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
266 |
+
|
267 |
+
for example in features:
|
268 |
+
try:
|
269 |
+
# Get ID and conversation fields
|
270 |
+
paper_id = example.get("id", "")
|
271 |
+
conversation = example.get("conversations", [])
|
272 |
+
|
273 |
+
if not conversation:
|
274 |
+
self.stats["skipped"] += 1
|
275 |
+
continue
|
276 |
+
|
277 |
+
# Track paper chunks
|
278 |
+
if paper_id not in self.paper_counters:
|
279 |
+
self.paper_counters[paper_id] = 0
|
280 |
+
self.paper_counters[paper_id] += 1
|
281 |
+
|
282 |
+
# Add metadata if configured
|
283 |
+
if self.include_metadata:
|
284 |
+
# Format metadata according to configured format
|
285 |
+
metadata_content = self.metadata_format.format(
|
286 |
+
paper_id=paper_id,
|
287 |
+
chunk_number=self.paper_counters[paper_id]
|
288 |
+
)
|
289 |
+
|
290 |
+
# Add as system message if not already in conversation
|
291 |
+
if not any(msg.get("role") == "system" for msg in conversation):
|
292 |
+
conversation = [{"role": "system", "content": metadata_content}] + conversation
|
293 |
+
|
294 |
+
# Format conversation with research introduction and chunk info
|
295 |
+
formatted_content = format_phi_chat(conversation, self.dataset_config)
|
296 |
+
|
297 |
+
# Tokenize with the model's chat template
|
298 |
+
inputs = self.tokenizer(
|
299 |
+
formatted_content,
|
300 |
+
add_special_tokens=True,
|
301 |
+
truncation=True,
|
302 |
+
max_length=self.max_seq_length,
|
303 |
+
return_tensors=None,
|
304 |
+
)
|
305 |
+
|
306 |
+
if len(inputs["input_ids"]) > 0:
|
307 |
+
# For causal language modeling, labels are the same as inputs
|
308 |
+
labels = inputs["input_ids"].copy()
|
309 |
+
|
310 |
+
batch["input_ids"].append(inputs["input_ids"])
|
311 |
+
batch["attention_mask"].append(inputs["attention_mask"])
|
312 |
+
batch["labels"].append(labels)
|
313 |
+
|
314 |
+
self.stats["processed"] += 1
|
315 |
+
self.stats["total_tokens"] += len(inputs["input_ids"])
|
316 |
+
|
317 |
+
# Debug logging for first few examples
|
318 |
+
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
|
319 |
+
if self.stats["processed"] <= log_samples:
|
320 |
+
logger.info(f"Example {self.stats['processed']} format:")
|
321 |
+
logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
|
322 |
+
logger.info(f"Token count: {len(inputs['input_ids'])}")
|
323 |
+
logger.info(f"Content preview:\n{formatted_content[:500]}...")
|
324 |
+
else:
|
325 |
+
self.stats["skipped"] += 1
|
326 |
+
except Exception as e:
|
327 |
+
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
328 |
+
self.stats["skipped"] += 1
|
329 |
+
continue
|
330 |
+
|
331 |
+
if not batch["input_ids"]:
|
332 |
+
logger.warning("Empty batch, returning dummy tensors")
|
333 |
+
return {
|
334 |
+
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
335 |
+
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
336 |
+
"labels": torch.zeros((1, 1), dtype=torch.long)
|
337 |
+
}
|
338 |
+
|
339 |
+
# Pad the batch
|
340 |
+
max_length = max(len(ids) for ids in batch["input_ids"])
|
341 |
+
|
342 |
+
for i in range(len(batch["input_ids"])):
|
343 |
+
padding_length = max_length - len(batch["input_ids"][i])
|
344 |
+
if padding_length > 0:
|
345 |
+
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
346 |
+
batch["attention_mask"][i].extend([0] * padding_length)
|
347 |
+
batch["labels"][i].extend([-100] * padding_length)
|
348 |
+
|
349 |
+
# Convert to tensors
|
350 |
+
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
351 |
+
|
352 |
+
# Log stats periodically
|
353 |
+
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
|
354 |
+
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
|
355 |
+
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
356 |
+
f"skipped={self.stats['skipped']}, "
|
357 |
+
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
358 |
+
f"unique_papers={len(self.paper_counters)}")
|
359 |
+
|
360 |
+
return batch
|
361 |
+
|
362 |
def main():
|
363 |
# Set up logging
|
364 |
logger.info("Starting training process")
|
|
|
444 |
logger.error(f"Error setting up PEFT: {e}")
|
445 |
return 1
|
446 |
|
447 |
+
# Load dataset
|
448 |
+
logger.info(f"Loading dataset: {dataset_config.get('dataset_name')}")
|
449 |
try:
|
450 |
+
dataset = load_dataset(dataset_config.get("dataset_name"))
|
451 |
+
logger.info(f"Dataset loaded successfully with {len(dataset['train'])} training examples")
|
452 |
+
|
453 |
+
# Sort dataset by ID to ensure chunks from the same paper are processed together
|
454 |
+
logger.info("Sorting dataset by ID to maintain paper chunk order")
|
455 |
+
def sort_by_id(example):
|
456 |
+
# Extract ID as integer if possible, otherwise keep as string
|
457 |
+
try:
|
458 |
+
return int(example['id'])
|
459 |
+
except (ValueError, TypeError):
|
460 |
+
return example['id']
|
461 |
+
|
462 |
+
# Apply sorting to the dataset
|
463 |
+
dataset['train'] = dataset['train'].sort('id')
|
464 |
+
logger.info("Dataset sorted by ID")
|
465 |
+
|
466 |
+
# Log the first few IDs to verify sorting
|
467 |
+
sample_ids = [example['id'] for example in dataset['train'].select(range(min(5, len(dataset['train']))))]
|
468 |
+
logger.info(f"First few IDs after sorting: {sample_ids}")
|
469 |
except Exception as e:
|
470 |
+
logger.error(f"Error loading or sorting dataset: {e}")
|
471 |
return 1
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
# Create data collator
|
474 |
+
data_collator = SimpleDataCollator(tokenizer, dataset_config)
|
475 |
|
476 |
# Simple logging callback
|
477 |
class LoggingCallback(TrainerCallback):
|
transformers_config.json
CHANGED
@@ -15,7 +15,7 @@
|
|
15 |
"training": {
|
16 |
"per_device_train_batch_size": 24,
|
17 |
"gradient_accumulation_steps": 2,
|
18 |
-
"learning_rate":
|
19 |
"num_train_epochs": 3,
|
20 |
"max_steps": -1,
|
21 |
"logging_steps": 10,
|
@@ -65,7 +65,7 @@
|
|
65 |
"offload_params": false
|
66 |
},
|
67 |
"ddp_find_unused_parameters": false,
|
68 |
-
"dataloader_num_workers":
|
69 |
},
|
70 |
|
71 |
"logging": {
|
|
|
15 |
"training": {
|
16 |
"per_device_train_batch_size": 24,
|
17 |
"gradient_accumulation_steps": 2,
|
18 |
+
"learning_rate": 2e-5,
|
19 |
"num_train_epochs": 3,
|
20 |
"max_steps": -1,
|
21 |
"logging_steps": 10,
|
|
|
65 |
"offload_params": false
|
66 |
},
|
67 |
"ddp_find_unused_parameters": false,
|
68 |
+
"dataloader_num_workers": 4
|
69 |
},
|
70 |
|
71 |
"logging": {
|