Spaces:
Paused
Paused
Upload folder using huggingface_hub
Browse files- app.py +195 -136
- hardware_config.json +5 -5
- run_transformers_training.py +203 -195
- transformers_config.json +2 -2
app.py
CHANGED
|
@@ -1,162 +1,221 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
import subprocess
|
| 4 |
import sys
|
| 5 |
import json
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
def
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
env_info["GPU"]["Memory (GB)"] = round(torch.cuda.get_device_properties(0).total_memory / (1024**3), 2)
|
| 51 |
|
| 52 |
-
return
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
"""
|
| 56 |
try:
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
# Start
|
|
|
|
| 61 |
process = subprocess.Popen(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
bufsize=1
|
| 67 |
)
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
except Exception as e:
|
| 76 |
-
|
| 77 |
-
return 1
|
| 78 |
|
| 79 |
-
def
|
| 80 |
-
|
| 81 |
-
"""Start the training process with the specified parameters."""
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
"
|
| 96 |
-
})
|
| 97 |
-
|
| 98 |
-
# Update hub settings if username is available
|
| 99 |
-
if os.environ.get("HF_USERNAME"):
|
| 100 |
-
config["huggingface_hub"].update({
|
| 101 |
-
"hub_model_id": f"{os.environ['HF_USERNAME']}/Phi4-Cognitive-Science"
|
| 102 |
-
})
|
| 103 |
-
|
| 104 |
-
# Save updated config
|
| 105 |
-
with open(os.path.join(current_dir, "transformers_config.json"), "w") as f:
|
| 106 |
-
json.dump(config, f, indent=4)
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
return "
|
|
|
|
| 114 |
except Exception as e:
|
| 115 |
-
return f"Error
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
|
|
|
| 119 |
|
| 120 |
-
with gr.
|
| 121 |
-
with gr.
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
num_train_epochs = gr.Slider(minimum=1, maximum=5, value=3, step=1,
|
| 131 |
-
label="Number of Epochs")
|
| 132 |
-
per_device_train_batch_size = gr.Slider(minimum=4, maximum=24, value=12, step=4,
|
| 133 |
-
label="Per Device Train Batch Size (Unsloth Optimized)")
|
| 134 |
-
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=8, value=4, step=1,
|
| 135 |
-
label="Gradient Accumulation Steps")
|
| 136 |
-
|
| 137 |
start_btn = gr.Button("Start Training", variant="primary")
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
|
|
|
| 160 |
if __name__ == "__main__":
|
| 161 |
-
|
| 162 |
-
demo.launch()
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import sys
|
| 3 |
import json
|
| 4 |
+
import logging
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import subprocess
|
| 8 |
+
import time
|
| 9 |
+
from datetime import datetime
|
| 10 |
|
| 11 |
+
# Configure logging
|
| 12 |
+
logging.basicConfig(
|
| 13 |
+
level=logging.INFO,
|
| 14 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 15 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
| 16 |
+
)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# Configuration paths
|
| 20 |
+
CONFIG_DIR = "."
|
| 21 |
+
TRANSFORMERS_CONFIG = os.path.join(CONFIG_DIR, "transformers_config.json")
|
| 22 |
+
HARDWARE_CONFIG = os.path.join(CONFIG_DIR, "hardware_config.json")
|
| 23 |
+
DATASET_CONFIG = os.path.join(CONFIG_DIR, "dataset_config.json")
|
| 24 |
+
|
| 25 |
+
def load_config(config_path):
|
| 26 |
+
"""Load configuration from JSON file."""
|
| 27 |
+
try:
|
| 28 |
+
if os.path.exists(config_path):
|
| 29 |
+
with open(config_path, 'r') as f:
|
| 30 |
+
return json.load(f)
|
| 31 |
+
else:
|
| 32 |
+
logger.error(f"Config file not found: {config_path}")
|
| 33 |
+
return None
|
| 34 |
+
except Exception as e:
|
| 35 |
+
logger.error(f"Error loading config: {str(e)}")
|
| 36 |
+
return None
|
| 37 |
|
| 38 |
+
def display_config():
|
| 39 |
+
"""Display current training configuration."""
|
| 40 |
+
transformers_config = load_config(TRANSFORMERS_CONFIG)
|
| 41 |
+
hardware_config = load_config(HARDWARE_CONFIG)
|
| 42 |
+
dataset_config = load_config(DATASET_CONFIG)
|
| 43 |
+
|
| 44 |
+
if not all([transformers_config, hardware_config, dataset_config]):
|
| 45 |
+
return "Error loading configuration files."
|
| 46 |
+
|
| 47 |
+
# Extract key parameters
|
| 48 |
+
model_name = transformers_config.get("model", {}).get("name", "")
|
| 49 |
+
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
| 50 |
+
batch_size = transformers_config.get("training", {}).get("per_device_train_batch_size", 0)
|
| 51 |
+
gradient_accum = transformers_config.get("training", {}).get("gradient_accumulation_steps", 0)
|
| 52 |
+
lr = transformers_config.get("training", {}).get("learning_rate", 0)
|
| 53 |
+
epochs = transformers_config.get("training", {}).get("num_train_epochs", 0)
|
| 54 |
+
gpu_count = hardware_config.get("specs", {}).get("gpu_count", 0)
|
| 55 |
+
gpu_type = hardware_config.get("specs", {}).get("gpu_type", "")
|
| 56 |
+
|
| 57 |
+
config_info = f"""
|
| 58 |
+
## Current Training Configuration
|
| 59 |
+
|
| 60 |
+
**Model**: {model_name}
|
| 61 |
+
**Dataset**: {dataset_name}
|
| 62 |
+
|
| 63 |
+
**Training Parameters**:
|
| 64 |
+
- Learning Rate: {lr}
|
| 65 |
+
- Epochs: {epochs}
|
| 66 |
+
- Batch Size/GPU: {batch_size}
|
| 67 |
+
- Gradient Accumulation: {gradient_accum}
|
| 68 |
+
- Effective Batch Size: {batch_size * gradient_accum * gpu_count}
|
| 69 |
+
|
| 70 |
+
**Hardware**:
|
| 71 |
+
- GPUs: {gpu_count}x {gpu_type}
|
| 72 |
+
- Flash Attention: {hardware_config.get("memory_optimization", {}).get("use_flash_attention", False)}
|
| 73 |
+
- Gradient Checkpointing: {hardware_config.get("memory_optimization", {}).get("use_gradient_checkpointing", False)}
|
| 74 |
|
| 75 |
+
**Pre-quantized 4-bit Training**: Enabled
|
| 76 |
+
"""
|
|
|
|
| 77 |
|
| 78 |
+
return config_info
|
| 79 |
|
| 80 |
+
def start_training():
|
| 81 |
+
"""Start the training process."""
|
| 82 |
try:
|
| 83 |
+
# Check if already running
|
| 84 |
+
if os.path.exists("training.pid"):
|
| 85 |
+
with open("training.pid", "r") as f:
|
| 86 |
+
pid = f.read().strip()
|
| 87 |
+
try:
|
| 88 |
+
# Check if process is still running
|
| 89 |
+
os.kill(int(pid), 0)
|
| 90 |
+
return f"Training is already running with PID {pid}"
|
| 91 |
+
except OSError:
|
| 92 |
+
# Process not running, remove stale PID file
|
| 93 |
+
os.remove("training.pid")
|
| 94 |
|
| 95 |
+
# Start training in background
|
| 96 |
+
cmd = "python run_transformers_training.py"
|
| 97 |
process = subprocess.Popen(
|
| 98 |
+
cmd,
|
| 99 |
+
shell=True,
|
| 100 |
+
stdout=open('training.log', 'a'),
|
| 101 |
+
stderr=subprocess.STDOUT
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# Save PID
|
| 105 |
+
with open("training.pid", "w") as f:
|
| 106 |
+
f.write(str(process.pid))
|
| 107 |
|
| 108 |
+
# Log start time
|
| 109 |
+
with open("training_history.log", "a") as f:
|
| 110 |
+
f.write(f"{datetime.now().isoformat()}: Training started (PID: {process.pid})\n")
|
| 111 |
+
|
| 112 |
+
return f"Training started with PID {process.pid}. Check status for updates."
|
| 113 |
+
|
| 114 |
except Exception as e:
|
| 115 |
+
return f"Error starting training: {str(e)}"
|
|
|
|
| 116 |
|
| 117 |
+
def check_training_status():
|
| 118 |
+
"""Check the status of training."""
|
|
|
|
| 119 |
try:
|
| 120 |
+
# Check if training is running
|
| 121 |
+
if os.path.exists("training.pid"):
|
| 122 |
+
with open("training.pid", "r") as f:
|
| 123 |
+
pid = f.read().strip()
|
| 124 |
+
try:
|
| 125 |
+
# Check if process is still running
|
| 126 |
+
os.kill(int(pid), 0)
|
| 127 |
+
status = f"Training is running with PID {pid}"
|
| 128 |
+
except OSError:
|
| 129 |
+
status = "Training process has stopped"
|
| 130 |
+
os.remove("training.pid")
|
| 131 |
+
else:
|
| 132 |
+
status = "No training process is currently running"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
# Get last lines from training log
|
| 135 |
+
log_content = "No training log available"
|
| 136 |
+
if os.path.exists("training.log"):
|
| 137 |
+
with open("training.log", "r") as f:
|
| 138 |
+
lines = f.readlines()
|
| 139 |
+
log_content = "".join(lines[-20:]) if lines else "Log file is empty"
|
| 140 |
|
| 141 |
+
return f"{status}\n\n**Recent Log:**\n```\n{log_content}\n```"
|
| 142 |
+
|
| 143 |
except Exception as e:
|
| 144 |
+
return f"Error checking status: {str(e)}"
|
| 145 |
|
| 146 |
+
# Create the Gradio interface
|
| 147 |
+
with gr.Blocks(title="Phi-4 Unsloth Training", theme=gr.themes.Soft(primary_hue="blue")) as app:
|
| 148 |
+
gr.Markdown("# Phi-4 Unsloth 4-bit Training Interface")
|
| 149 |
|
| 150 |
+
with gr.Tabs():
|
| 151 |
+
with gr.TabItem("Configuration"):
|
| 152 |
+
config_output = gr.Markdown(display_config())
|
| 153 |
+
refresh_btn = gr.Button("Refresh Configuration")
|
| 154 |
+
refresh_btn.click(fn=display_config, outputs=config_output)
|
| 155 |
+
|
| 156 |
+
with gr.TabItem("Training Control"):
|
| 157 |
+
gr.Markdown("## Training Management")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
start_btn = gr.Button("Start Training", variant="primary")
|
| 161 |
+
check_btn = gr.Button("Check Status")
|
| 162 |
+
|
| 163 |
+
status_output = gr.Markdown("Click 'Check Status' to see training progress")
|
| 164 |
+
|
| 165 |
+
start_btn.click(fn=start_training, outputs=status_output)
|
| 166 |
+
check_btn.click(fn=check_training_status, outputs=status_output)
|
| 167 |
+
|
| 168 |
+
# Auto-refresh status
|
| 169 |
+
gr.HTML('''
|
| 170 |
+
<script>
|
| 171 |
+
let intervalId;
|
| 172 |
+
|
| 173 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 174 |
+
// Find the "Check Status" button
|
| 175 |
+
const buttons = Array.from(document.querySelectorAll('button'));
|
| 176 |
+
const checkBtn = buttons.find(btn => btn.textContent.includes('Check Status'));
|
| 177 |
+
|
| 178 |
+
// Set up interval to click the button every 30 seconds
|
| 179 |
+
if (checkBtn) {
|
| 180 |
+
intervalId = setInterval(() => {
|
| 181 |
+
checkBtn.click();
|
| 182 |
+
}, 30000);
|
| 183 |
+
}
|
| 184 |
+
});
|
| 185 |
+
|
| 186 |
+
// Clean up on tab/window close
|
| 187 |
+
window.addEventListener('beforeunload', function() {
|
| 188 |
+
clearInterval(intervalId);
|
| 189 |
+
});
|
| 190 |
+
</script>
|
| 191 |
+
''')
|
| 192 |
|
| 193 |
+
with gr.TabItem("Help"):
|
| 194 |
+
gr.Markdown("""
|
| 195 |
+
## Phi-4 Unsloth Training Help
|
| 196 |
+
|
| 197 |
+
This interface allows you to manage training of the Phi-4 model with Unsloth 4-bit optimizations.
|
| 198 |
+
|
| 199 |
+
### Quick Start
|
| 200 |
+
|
| 201 |
+
1. Review the configuration in the Configuration tab
|
| 202 |
+
2. Click "Start Training" to begin the process
|
| 203 |
+
3. Use "Check Status" to monitor progress
|
| 204 |
+
|
| 205 |
+
### Notes
|
| 206 |
+
|
| 207 |
+
- Training uses the pre-quantized model `unsloth/phi-4-unsloth-bnb-4bit`
|
| 208 |
+
- The process maintains paper order and handles metadata appropriately
|
| 209 |
+
- Training progress will be regularly saved to HuggingFace Hub
|
| 210 |
+
|
| 211 |
+
### Troubleshooting
|
| 212 |
+
|
| 213 |
+
If training stops unexpectedly:
|
| 214 |
+
- Check the logs for out-of-memory errors
|
| 215 |
+
- Verify the VRAM usage on each GPU
|
| 216 |
+
- Check for CUDA version compatibility
|
| 217 |
+
""")
|
| 218 |
|
| 219 |
+
# Launch the app
|
| 220 |
if __name__ == "__main__":
|
| 221 |
+
app.launch()
|
|
|
hardware_config.json
CHANGED
|
@@ -9,13 +9,13 @@
|
|
| 9 |
"ram": 186
|
| 10 |
},
|
| 11 |
"training_optimizations": {
|
| 12 |
-
"per_device_batch_size":
|
| 13 |
"gradient_accumulation_steps": 2,
|
| 14 |
-
"effective_batch_size":
|
| 15 |
"memory_optimizations": {
|
| 16 |
"use_gradient_checkpointing": true,
|
| 17 |
"pin_memory": true,
|
| 18 |
-
"num_workers":
|
| 19 |
"use_flash_attention": true
|
| 20 |
},
|
| 21 |
"distributed_settings": {
|
|
@@ -41,9 +41,9 @@
|
|
| 41 |
"mixed_precision": "bf16",
|
| 42 |
"num_gpus": 4,
|
| 43 |
"training_parameters": {
|
| 44 |
-
"per_device_train_batch_size":
|
| 45 |
"gradient_accumulation_steps": 2,
|
| 46 |
-
"dataloader_num_workers":
|
| 47 |
"dataloader_pin_memory": true,
|
| 48 |
"gradient_checkpointing": true,
|
| 49 |
"max_grad_norm": 1.0
|
|
|
|
| 9 |
"ram": 186
|
| 10 |
},
|
| 11 |
"training_optimizations": {
|
| 12 |
+
"per_device_batch_size": 24,
|
| 13 |
"gradient_accumulation_steps": 2,
|
| 14 |
+
"effective_batch_size": 192,
|
| 15 |
"memory_optimizations": {
|
| 16 |
"use_gradient_checkpointing": true,
|
| 17 |
"pin_memory": true,
|
| 18 |
+
"num_workers": 4,
|
| 19 |
"use_flash_attention": true
|
| 20 |
},
|
| 21 |
"distributed_settings": {
|
|
|
|
| 41 |
"mixed_precision": "bf16",
|
| 42 |
"num_gpus": 4,
|
| 43 |
"training_parameters": {
|
| 44 |
+
"per_device_train_batch_size": 24,
|
| 45 |
"gradient_accumulation_steps": 2,
|
| 46 |
+
"dataloader_num_workers": 4,
|
| 47 |
"dataloader_pin_memory": true,
|
| 48 |
"gradient_checkpointing": true,
|
| 49 |
"max_grad_norm": 1.0
|
run_transformers_training.py
CHANGED
|
@@ -127,13 +127,12 @@ def parse_args():
|
|
| 127 |
def load_model_and_tokenizer(config):
|
| 128 |
"""Load model and tokenizer with proper error handling and optimizations."""
|
| 129 |
try:
|
| 130 |
-
if
|
| 131 |
-
logger.info("Using Unsloth optimizations")
|
| 132 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 133 |
model_name=config.get("model_name"),
|
| 134 |
max_seq_length=config.get("max_seq_length", 2048),
|
| 135 |
dtype=None, # Let Unsloth choose optimal dtype
|
| 136 |
-
load_in_4bit=config.get("load_in_4bit", True),
|
| 137 |
device_map="auto",
|
| 138 |
)
|
| 139 |
|
|
@@ -151,49 +150,14 @@ def load_model_and_tokenizer(config):
|
|
| 151 |
)
|
| 152 |
logger.info("Unsloth optimizations applied successfully")
|
| 153 |
else:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
# Standard quantization setup
|
| 158 |
-
quantization_config = None
|
| 159 |
-
if config.get("load_in_4bit", False) and bitsandbytes_available:
|
| 160 |
-
logger.info("Using 4-bit quantization")
|
| 161 |
-
quantization_config = BitsAndBytesConfig(
|
| 162 |
-
load_in_4bit=True,
|
| 163 |
-
bnb_4bit_quant_type="nf4",
|
| 164 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 165 |
-
bnb_4bit_use_double_quant=True
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
# Load model with standard settings
|
| 169 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 170 |
-
config.get("model_name"),
|
| 171 |
-
quantization_config=quantization_config,
|
| 172 |
-
device_map="auto",
|
| 173 |
-
trust_remote_code=config.get("trust_remote_code", True),
|
| 174 |
-
use_cache=not config.get("gradient_checkpointing", True)
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
# Load tokenizer
|
| 178 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 179 |
-
config.get("model_name"),
|
| 180 |
-
use_fast=config.get("use_fast_tokenizer", True),
|
| 181 |
-
trust_remote_code=config.get("trust_remote_code", True)
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
# Enable gradient checkpointing if requested
|
| 185 |
-
if config.get("gradient_checkpointing", True) and hasattr(model, "gradient_checkpointing_enable"):
|
| 186 |
-
model.gradient_checkpointing_enable(use_reentrant=False)
|
| 187 |
-
logger.info("Gradient checkpointing enabled")
|
| 188 |
|
| 189 |
# Set up tokenizer settings
|
| 190 |
if config.get("chat_template"):
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
else:
|
| 195 |
-
tokenizer.chat_template = config.get("chat_template")
|
| 196 |
-
logger.info(f"Set chat template to {config.get('chat_template')}")
|
| 197 |
|
| 198 |
# Ensure proper token settings
|
| 199 |
if tokenizer.pad_token_id is None:
|
|
@@ -210,33 +174,191 @@ def load_dataset_with_mapping(dataset_config):
|
|
| 210 |
"""Load and prepare dataset with proper column mapping."""
|
| 211 |
try:
|
| 212 |
# Load dataset
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
# Sort dataset if required
|
| 226 |
-
|
| 227 |
-
|
|
|
|
| 228 |
dataset = dataset.sort("id")
|
| 229 |
|
| 230 |
-
# Log first few IDs to verify sorting
|
| 231 |
-
sample_ids = [example[
|
| 232 |
logger.info(f"First few IDs after sorting: {sample_ids}")
|
| 233 |
|
|
|
|
| 234 |
return dataset
|
| 235 |
-
|
| 236 |
except Exception as e:
|
| 237 |
logger.error(f"Error loading dataset: {str(e)}")
|
| 238 |
raise
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
def main():
|
| 241 |
# Set up logging
|
| 242 |
logger.info("Starting training process")
|
|
@@ -322,148 +444,34 @@ def main():
|
|
| 322 |
logger.error(f"Error setting up PEFT: {e}")
|
| 323 |
return 1
|
| 324 |
|
| 325 |
-
# Load dataset
|
|
|
|
| 326 |
try:
|
| 327 |
-
dataset =
|
| 328 |
-
logger.info("Dataset loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
except Exception as e:
|
| 330 |
-
logger.error(f"Error loading dataset: {e}")
|
| 331 |
return 1
|
| 332 |
|
| 333 |
-
# Simple data collator that processes each entry independently
|
| 334 |
-
class SimpleDataCollator:
|
| 335 |
-
def __init__(self, tokenizer):
|
| 336 |
-
self.tokenizer = tokenizer
|
| 337 |
-
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
| 338 |
-
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
| 339 |
-
self.prompt_counter = 0
|
| 340 |
-
self.paper_counters = {}
|
| 341 |
-
logger.info("SimpleDataCollator initialized - using phi-4 chat format")
|
| 342 |
-
|
| 343 |
-
def format_phi_chat(self, messages):
|
| 344 |
-
"""Format messages according to phi-4's chat template."""
|
| 345 |
-
formatted_chat = ""
|
| 346 |
-
for message in messages:
|
| 347 |
-
# Extract role and content
|
| 348 |
-
if isinstance(message, dict):
|
| 349 |
-
role = message.get("role", "").lower()
|
| 350 |
-
content = message.get("content", "")
|
| 351 |
-
else:
|
| 352 |
-
role = getattr(message, "role", "").lower()
|
| 353 |
-
content = getattr(message, "content", "")
|
| 354 |
-
|
| 355 |
-
# Format based on role
|
| 356 |
-
if role == "human" or role == "user":
|
| 357 |
-
formatted_chat += f"Human: {content}\n\n"
|
| 358 |
-
elif role == "assistant":
|
| 359 |
-
formatted_chat += f"Assistant: {content}\n\n"
|
| 360 |
-
elif role == "system":
|
| 361 |
-
# For system messages, we prepend them with a special format
|
| 362 |
-
formatted_chat = f"System: {content}\n\n" + formatted_chat
|
| 363 |
-
else:
|
| 364 |
-
logger.warning(f"Unknown role '{role}' - treating as system message")
|
| 365 |
-
formatted_chat += f"System: {content}\n\n"
|
| 366 |
-
|
| 367 |
-
return formatted_chat.strip()
|
| 368 |
-
|
| 369 |
-
def __call__(self, features):
|
| 370 |
-
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
| 371 |
-
|
| 372 |
-
for example in features:
|
| 373 |
-
try:
|
| 374 |
-
# Get ID and conversation fields
|
| 375 |
-
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
|
| 376 |
-
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
|
| 377 |
-
|
| 378 |
-
if not conversation:
|
| 379 |
-
self.stats["skipped"] += 1
|
| 380 |
-
continue
|
| 381 |
-
|
| 382 |
-
# Increment counters
|
| 383 |
-
self.prompt_counter += 1
|
| 384 |
-
if paper_id not in self.paper_counters:
|
| 385 |
-
self.paper_counters[paper_id] = 0
|
| 386 |
-
self.paper_counters[paper_id] += 1
|
| 387 |
-
|
| 388 |
-
# Add metadata as system message
|
| 389 |
-
metadata = {
|
| 390 |
-
"role": "system",
|
| 391 |
-
"content": f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}"
|
| 392 |
-
}
|
| 393 |
-
|
| 394 |
-
# Format the conversation using phi-4's chat template
|
| 395 |
-
formatted_content = self.format_phi_chat([metadata] + conversation)
|
| 396 |
-
|
| 397 |
-
# Tokenize with the model's chat template
|
| 398 |
-
inputs = self.tokenizer(
|
| 399 |
-
formatted_content,
|
| 400 |
-
add_special_tokens=True,
|
| 401 |
-
truncation=True,
|
| 402 |
-
max_length=model_config.get("max_seq_length", 2048),
|
| 403 |
-
return_tensors=None, # Return list instead of tensors
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
input_ids = inputs["input_ids"]
|
| 407 |
-
attention_mask = inputs["attention_mask"]
|
| 408 |
-
|
| 409 |
-
if len(input_ids) > 0:
|
| 410 |
-
# For causal language modeling, labels are the same as inputs
|
| 411 |
-
labels = input_ids.copy()
|
| 412 |
-
|
| 413 |
-
batch["input_ids"].append(input_ids)
|
| 414 |
-
batch["attention_mask"].append(attention_mask)
|
| 415 |
-
batch["labels"].append(labels)
|
| 416 |
-
|
| 417 |
-
self.stats["processed"] += 1
|
| 418 |
-
self.stats["total_tokens"] += len(input_ids)
|
| 419 |
-
|
| 420 |
-
# Debug logging for first few examples
|
| 421 |
-
if self.stats["processed"] <= 3:
|
| 422 |
-
logger.info(f"Example {self.stats['processed']} format:")
|
| 423 |
-
logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
|
| 424 |
-
logger.info(f"Token count: {len(input_ids)}")
|
| 425 |
-
logger.info(f"Content preview:\n{formatted_content[:500]}...")
|
| 426 |
-
else:
|
| 427 |
-
self.stats["skipped"] += 1
|
| 428 |
-
|
| 429 |
-
except Exception as e:
|
| 430 |
-
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
| 431 |
-
self.stats["skipped"] += 1
|
| 432 |
-
continue
|
| 433 |
-
|
| 434 |
-
# Handle empty batches
|
| 435 |
-
if not batch["input_ids"]:
|
| 436 |
-
logger.warning("Empty batch, returning dummy tensors")
|
| 437 |
-
return {
|
| 438 |
-
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
| 439 |
-
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
| 440 |
-
"labels": torch.zeros((1, 1), dtype=torch.long)
|
| 441 |
-
}
|
| 442 |
-
|
| 443 |
-
# Pad the batch
|
| 444 |
-
max_length = max(len(ids) for ids in batch["input_ids"])
|
| 445 |
-
|
| 446 |
-
for i in range(len(batch["input_ids"])):
|
| 447 |
-
padding_length = max_length - len(batch["input_ids"][i])
|
| 448 |
-
if padding_length > 0:
|
| 449 |
-
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
| 450 |
-
batch["attention_mask"][i].extend([0] * padding_length)
|
| 451 |
-
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding
|
| 452 |
-
|
| 453 |
-
# Convert to tensors
|
| 454 |
-
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
| 455 |
-
|
| 456 |
-
# Log stats periodically
|
| 457 |
-
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
|
| 458 |
-
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
| 459 |
-
f"skipped={self.stats['skipped']}, "
|
| 460 |
-
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
| 461 |
-
f"unique_papers={len(self.paper_counters)}")
|
| 462 |
-
|
| 463 |
-
return batch
|
| 464 |
-
|
| 465 |
# Create data collator
|
| 466 |
-
data_collator = SimpleDataCollator(tokenizer)
|
| 467 |
|
| 468 |
# Simple logging callback
|
| 469 |
class LoggingCallback(TrainerCallback):
|
|
|
|
| 127 |
def load_model_and_tokenizer(config):
|
| 128 |
"""Load model and tokenizer with proper error handling and optimizations."""
|
| 129 |
try:
|
| 130 |
+
if unsloth_available:
|
| 131 |
+
logger.info("Using Unsloth optimizations with pre-quantized model")
|
| 132 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 133 |
model_name=config.get("model_name"),
|
| 134 |
max_seq_length=config.get("max_seq_length", 2048),
|
| 135 |
dtype=None, # Let Unsloth choose optimal dtype
|
|
|
|
| 136 |
device_map="auto",
|
| 137 |
)
|
| 138 |
|
|
|
|
| 150 |
)
|
| 151 |
logger.info("Unsloth optimizations applied successfully")
|
| 152 |
else:
|
| 153 |
+
logger.error("Unsloth is required for training with pre-quantized model")
|
| 154 |
+
raise ImportError("Unsloth is required for this training setup")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
# Set up tokenizer settings
|
| 157 |
if config.get("chat_template"):
|
| 158 |
+
chat_template = get_chat_template("phi")
|
| 159 |
+
tokenizer.chat_template = chat_template
|
| 160 |
+
logger.info("Set phi chat template")
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
# Ensure proper token settings
|
| 163 |
if tokenizer.pad_token_id is None:
|
|
|
|
| 174 |
"""Load and prepare dataset with proper column mapping."""
|
| 175 |
try:
|
| 176 |
# Load dataset
|
| 177 |
+
dataset_name = dataset_config.get("dataset", {}).get("name", "")
|
| 178 |
+
dataset_split = dataset_config.get("dataset", {}).get("split", "train")
|
| 179 |
+
|
| 180 |
+
if not dataset_name:
|
| 181 |
+
raise ValueError("Dataset name not provided in configuration")
|
| 182 |
|
| 183 |
+
logger.info(f"Loading dataset {dataset_name}, split {dataset_split}")
|
| 184 |
+
dataset = load_dataset(dataset_name, split=dataset_split)
|
| 185 |
+
|
| 186 |
+
# Map columns if specified
|
| 187 |
+
column_mapping = dataset_config.get("dataset", {}).get("column_mapping", {})
|
| 188 |
+
if column_mapping:
|
| 189 |
+
logger.info(f"Applying column mapping: {column_mapping}")
|
| 190 |
+
|
| 191 |
+
# Rename columns according to mapping
|
| 192 |
+
for target, source in column_mapping.items():
|
| 193 |
+
if source in dataset.column_names:
|
| 194 |
+
dataset = dataset.rename_column(source, target)
|
| 195 |
|
| 196 |
# Sort dataset if required
|
| 197 |
+
sort_by_id = dataset_config.get("dataset", {}).get("processing", {}).get("sort_by_id", False)
|
| 198 |
+
if sort_by_id and "id" in dataset.column_names:
|
| 199 |
+
logger.info("Sorting dataset by ID")
|
| 200 |
dataset = dataset.sort("id")
|
| 201 |
|
| 202 |
+
# Log the first few IDs to verify sorting
|
| 203 |
+
sample_ids = [example['id'] for example in dataset.select(range(min(5, len(dataset))))]
|
| 204 |
logger.info(f"First few IDs after sorting: {sample_ids}")
|
| 205 |
|
| 206 |
+
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
|
| 207 |
return dataset
|
| 208 |
+
|
| 209 |
except Exception as e:
|
| 210 |
logger.error(f"Error loading dataset: {str(e)}")
|
| 211 |
raise
|
| 212 |
|
| 213 |
+
def format_phi_chat(messages, dataset_config):
|
| 214 |
+
"""Format messages according to phi-4's chat template and dataset config."""
|
| 215 |
+
formatted_chat = ""
|
| 216 |
+
|
| 217 |
+
# Get role templates from config
|
| 218 |
+
roles = dataset_config.get("data_formatting", {}).get("roles", {
|
| 219 |
+
"system": "System: {content}\n\n",
|
| 220 |
+
"human": "Human: {content}\n\n",
|
| 221 |
+
"assistant": "Assistant: {content}\n\n"
|
| 222 |
+
})
|
| 223 |
+
|
| 224 |
+
# Handle research introduction metadata first
|
| 225 |
+
metadata = next((msg for msg in messages if "[RESEARCH INTRODUCTION]" in msg.get("content", "")), None)
|
| 226 |
+
if metadata:
|
| 227 |
+
system_template = roles.get("system", "System: {content}\n\n")
|
| 228 |
+
formatted_chat = system_template.format(content=metadata['content'])
|
| 229 |
+
messages = [msg for msg in messages if msg != metadata]
|
| 230 |
+
|
| 231 |
+
# Process remaining messages
|
| 232 |
+
for message in messages:
|
| 233 |
+
role = message.get("role", "").lower()
|
| 234 |
+
content = message.get("content", "")
|
| 235 |
+
|
| 236 |
+
# Format based on role
|
| 237 |
+
if role == "human" or role == "user":
|
| 238 |
+
template = roles.get("human", "Human: {content}\n\n")
|
| 239 |
+
formatted_chat += template.format(content=content)
|
| 240 |
+
elif role == "assistant":
|
| 241 |
+
template = roles.get("assistant", "Assistant: {content}\n\n")
|
| 242 |
+
formatted_chat += template.format(content=content)
|
| 243 |
+
elif role == "system":
|
| 244 |
+
# For system messages, prepend them
|
| 245 |
+
template = roles.get("system", "System: {content}\n\n")
|
| 246 |
+
formatted_chat = template.format(content=content) + formatted_chat
|
| 247 |
+
|
| 248 |
+
return formatted_chat.strip()
|
| 249 |
+
|
| 250 |
+
class SimpleDataCollator:
|
| 251 |
+
def __init__(self, tokenizer, dataset_config):
|
| 252 |
+
self.tokenizer = tokenizer
|
| 253 |
+
self.dataset_config = dataset_config
|
| 254 |
+
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
| 255 |
+
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
| 256 |
+
self.prompt_counter = 0
|
| 257 |
+
self.paper_counters = {}
|
| 258 |
+
self.max_seq_length = dataset_config.get("dataset", {}).get("processing", {}).get("max_seq_length", 2048)
|
| 259 |
+
self.include_metadata = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("include_paper_id", True)
|
| 260 |
+
self.include_chunk = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("include_chunk_number", True)
|
| 261 |
+
self.metadata_format = dataset_config.get("data_formatting", {}).get("metadata_handling", {}).get("metadata_format", "Paper ID: {paper_id} | Chunk: {chunk_number}")
|
| 262 |
+
logger.info(f"SimpleDataCollator initialized - using phi-4 chat format with max_seq_length={self.max_seq_length}")
|
| 263 |
+
|
| 264 |
+
def __call__(self, features):
|
| 265 |
+
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
| 266 |
+
|
| 267 |
+
for example in features:
|
| 268 |
+
try:
|
| 269 |
+
# Get ID and conversation fields
|
| 270 |
+
paper_id = example.get("id", "")
|
| 271 |
+
conversation = example.get("conversations", [])
|
| 272 |
+
|
| 273 |
+
if not conversation:
|
| 274 |
+
self.stats["skipped"] += 1
|
| 275 |
+
continue
|
| 276 |
+
|
| 277 |
+
# Track paper chunks
|
| 278 |
+
if paper_id not in self.paper_counters:
|
| 279 |
+
self.paper_counters[paper_id] = 0
|
| 280 |
+
self.paper_counters[paper_id] += 1
|
| 281 |
+
|
| 282 |
+
# Add metadata if configured
|
| 283 |
+
if self.include_metadata:
|
| 284 |
+
# Format metadata according to configured format
|
| 285 |
+
metadata_content = self.metadata_format.format(
|
| 286 |
+
paper_id=paper_id,
|
| 287 |
+
chunk_number=self.paper_counters[paper_id]
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Add as system message if not already in conversation
|
| 291 |
+
if not any(msg.get("role") == "system" for msg in conversation):
|
| 292 |
+
conversation = [{"role": "system", "content": metadata_content}] + conversation
|
| 293 |
+
|
| 294 |
+
# Format conversation with research introduction and chunk info
|
| 295 |
+
formatted_content = format_phi_chat(conversation, self.dataset_config)
|
| 296 |
+
|
| 297 |
+
# Tokenize with the model's chat template
|
| 298 |
+
inputs = self.tokenizer(
|
| 299 |
+
formatted_content,
|
| 300 |
+
add_special_tokens=True,
|
| 301 |
+
truncation=True,
|
| 302 |
+
max_length=self.max_seq_length,
|
| 303 |
+
return_tensors=None,
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
if len(inputs["input_ids"]) > 0:
|
| 307 |
+
# For causal language modeling, labels are the same as inputs
|
| 308 |
+
labels = inputs["input_ids"].copy()
|
| 309 |
+
|
| 310 |
+
batch["input_ids"].append(inputs["input_ids"])
|
| 311 |
+
batch["attention_mask"].append(inputs["attention_mask"])
|
| 312 |
+
batch["labels"].append(labels)
|
| 313 |
+
|
| 314 |
+
self.stats["processed"] += 1
|
| 315 |
+
self.stats["total_tokens"] += len(inputs["input_ids"])
|
| 316 |
+
|
| 317 |
+
# Debug logging for first few examples
|
| 318 |
+
log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
|
| 319 |
+
if self.stats["processed"] <= log_samples:
|
| 320 |
+
logger.info(f"Example {self.stats['processed']} format:")
|
| 321 |
+
logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
|
| 322 |
+
logger.info(f"Token count: {len(inputs['input_ids'])}")
|
| 323 |
+
logger.info(f"Content preview:\n{formatted_content[:500]}...")
|
| 324 |
+
else:
|
| 325 |
+
self.stats["skipped"] += 1
|
| 326 |
+
except Exception as e:
|
| 327 |
+
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
| 328 |
+
self.stats["skipped"] += 1
|
| 329 |
+
continue
|
| 330 |
+
|
| 331 |
+
if not batch["input_ids"]:
|
| 332 |
+
logger.warning("Empty batch, returning dummy tensors")
|
| 333 |
+
return {
|
| 334 |
+
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
| 335 |
+
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
| 336 |
+
"labels": torch.zeros((1, 1), dtype=torch.long)
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
# Pad the batch
|
| 340 |
+
max_length = max(len(ids) for ids in batch["input_ids"])
|
| 341 |
+
|
| 342 |
+
for i in range(len(batch["input_ids"])):
|
| 343 |
+
padding_length = max_length - len(batch["input_ids"][i])
|
| 344 |
+
if padding_length > 0:
|
| 345 |
+
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
| 346 |
+
batch["attention_mask"][i].extend([0] * padding_length)
|
| 347 |
+
batch["labels"][i].extend([-100] * padding_length)
|
| 348 |
+
|
| 349 |
+
# Convert to tensors
|
| 350 |
+
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
| 351 |
+
|
| 352 |
+
# Log stats periodically
|
| 353 |
+
log_interval = self.dataset_config.get("validation", {}).get("log_interval", 100)
|
| 354 |
+
if self.stats["processed"] % log_interval == 0 and self.stats["processed"] > 0:
|
| 355 |
+
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
| 356 |
+
f"skipped={self.stats['skipped']}, "
|
| 357 |
+
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
| 358 |
+
f"unique_papers={len(self.paper_counters)}")
|
| 359 |
+
|
| 360 |
+
return batch
|
| 361 |
+
|
| 362 |
def main():
|
| 363 |
# Set up logging
|
| 364 |
logger.info("Starting training process")
|
|
|
|
| 444 |
logger.error(f"Error setting up PEFT: {e}")
|
| 445 |
return 1
|
| 446 |
|
| 447 |
+
# Load dataset
|
| 448 |
+
logger.info(f"Loading dataset: {dataset_config.get('dataset_name')}")
|
| 449 |
try:
|
| 450 |
+
dataset = load_dataset(dataset_config.get("dataset_name"))
|
| 451 |
+
logger.info(f"Dataset loaded successfully with {len(dataset['train'])} training examples")
|
| 452 |
+
|
| 453 |
+
# Sort dataset by ID to ensure chunks from the same paper are processed together
|
| 454 |
+
logger.info("Sorting dataset by ID to maintain paper chunk order")
|
| 455 |
+
def sort_by_id(example):
|
| 456 |
+
# Extract ID as integer if possible, otherwise keep as string
|
| 457 |
+
try:
|
| 458 |
+
return int(example['id'])
|
| 459 |
+
except (ValueError, TypeError):
|
| 460 |
+
return example['id']
|
| 461 |
+
|
| 462 |
+
# Apply sorting to the dataset
|
| 463 |
+
dataset['train'] = dataset['train'].sort('id')
|
| 464 |
+
logger.info("Dataset sorted by ID")
|
| 465 |
+
|
| 466 |
+
# Log the first few IDs to verify sorting
|
| 467 |
+
sample_ids = [example['id'] for example in dataset['train'].select(range(min(5, len(dataset['train']))))]
|
| 468 |
+
logger.info(f"First few IDs after sorting: {sample_ids}")
|
| 469 |
except Exception as e:
|
| 470 |
+
logger.error(f"Error loading or sorting dataset: {e}")
|
| 471 |
return 1
|
| 472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
# Create data collator
|
| 474 |
+
data_collator = SimpleDataCollator(tokenizer, dataset_config)
|
| 475 |
|
| 476 |
# Simple logging callback
|
| 477 |
class LoggingCallback(TrainerCallback):
|
transformers_config.json
CHANGED
|
@@ -15,7 +15,7 @@
|
|
| 15 |
"training": {
|
| 16 |
"per_device_train_batch_size": 24,
|
| 17 |
"gradient_accumulation_steps": 2,
|
| 18 |
-
"learning_rate":
|
| 19 |
"num_train_epochs": 3,
|
| 20 |
"max_steps": -1,
|
| 21 |
"logging_steps": 10,
|
|
@@ -65,7 +65,7 @@
|
|
| 65 |
"offload_params": false
|
| 66 |
},
|
| 67 |
"ddp_find_unused_parameters": false,
|
| 68 |
-
"dataloader_num_workers":
|
| 69 |
},
|
| 70 |
|
| 71 |
"logging": {
|
|
|
|
| 15 |
"training": {
|
| 16 |
"per_device_train_batch_size": 24,
|
| 17 |
"gradient_accumulation_steps": 2,
|
| 18 |
+
"learning_rate": 2e-5,
|
| 19 |
"num_train_epochs": 3,
|
| 20 |
"max_steps": -1,
|
| 21 |
"logging_steps": 10,
|
|
|
|
| 65 |
"offload_params": false
|
| 66 |
},
|
| 67 |
"ddp_find_unused_parameters": false,
|
| 68 |
+
"dataloader_num_workers": 4
|
| 69 |
},
|
| 70 |
|
| 71 |
"logging": {
|