George-API commited on
Commit
678c431
·
verified ·
1 Parent(s): 73ea801

Upload folder using huggingface_hub

Browse files
run_distributed.bat ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ @echo off
2
+ REM ======================================================================
3
+ REM Distributed training launch script for Phi-4 training with torchrun
4
+ REM This script launches multi-GPU training on Windows systems
5
+ REM ======================================================================
6
+
7
+ REM Set the number of GPUs to use (defaults to all available)
8
+ set NUM_GPUS=%1
9
+ if "%NUM_GPUS%"=="" set NUM_GPUS=4
10
+
11
+ echo.
12
+ echo ===== Phi-4 Distributed Training =====
13
+ echo.
14
+ echo Preparing to launch training with %NUM_GPUS% GPUs...
15
+
16
+ REM Check if Python is available
17
+ where python >nul 2>&1
18
+ if %ERRORLEVEL% NEQ 0 (
19
+ echo ERROR: Python not found in PATH. Please make sure Python is installed and in your PATH.
20
+ exit /b 1
21
+ )
22
+
23
+ REM Check if PyTorch is installed by attempting to import it
24
+ python -c "import torch" >nul 2>&1
25
+ if %ERRORLEVEL% NEQ 0 (
26
+ echo ERROR: PyTorch not properly installed. Please install with:
27
+ echo pip install torch>=2.0.0
28
+ exit /b 1
29
+ )
30
+
31
+ REM Check if torch.distributed is available
32
+ python -c "import torch.distributed" >nul 2>&1
33
+ if %ERRORLEVEL% NEQ 0 (
34
+ echo ERROR: torch.distributed module not available. Please check your PyTorch installation.
35
+ exit /b 1
36
+ )
37
+
38
+ echo Environment checks passed. Starting distributed training...
39
+ echo.
40
+
41
+ REM Launch the distributed training
42
+ python -m torch.distributed.run --nproc_per_node=%NUM_GPUS% --master_port=29500 run_transformers_training.py --config transformers_config.json
43
+
44
+ REM Check exit status
45
+ if %ERRORLEVEL% EQU 0 (
46
+ echo.
47
+ echo ===== SUCCESS =====
48
+ echo Distributed training completed successfully!
49
+ ) else (
50
+ echo.
51
+ echo ===== ERROR =====
52
+ echo Distributed training failed with exit code %ERRORLEVEL%
53
+ )
54
+
55
+ echo.
56
+ echo Training logs are available in the ./results directory.
run_distributed.sh ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Distributed training launch script for Phi-4 training
3
+ # This script uses torchrun to launch multi-GPU training
4
+
5
+ # Set the number of GPUs to use (defaults to all available)
6
+ NUM_GPUS=${1:-4}
7
+
8
+ # Check if torchrun is available
9
+ if ! command -v torchrun &> /dev/null; then
10
+ echo "torchrun command not found. Make sure PyTorch is installed properly."
11
+ echo "Try: pip install torch>=2.0.0"
12
+ exit 1
13
+ fi
14
+
15
+ echo "Launching distributed training with $NUM_GPUS GPUs..."
16
+
17
+ # Launch the distributed training
18
+ torchrun --nproc_per_node=$NUM_GPUS \
19
+ --master_port=29500 \
20
+ run_transformers_training.py \
21
+ --config transformers_config.json
22
+
23
+ # Check exit status
24
+ if [ $? -eq 0 ]; then
25
+ echo "Distributed training completed successfully!"
26
+ else
27
+ echo "Distributed training failed with exit code $?"
28
+ fi
run_transformers_training.py CHANGED
@@ -432,7 +432,7 @@ def load_dataset_with_mapping(dataset_config):
432
 
433
  except Exception as e:
434
  logger.error(f"Error loading dataset: {str(e)}")
435
- raise
436
 
437
  def format_phi_chat(messages, dataset_config):
438
  """Format messages according to phi-4's chat template and dataset config."""
@@ -502,31 +502,50 @@ class SimpleDataCollator:
502
 
503
  for example in features:
504
  try:
505
- # Get ID
506
- paper_id = example.get("article_id", example.get("id", ""))
507
 
508
- # Get conversations
509
- raw_conversations = example.get("conversations", [])
 
 
 
 
 
 
 
 
 
 
 
 
510
  if not raw_conversations:
511
- logger.warning(f"Empty conversations for example {paper_id}")
512
  self.stats["skipped"] += 1
513
  continue
514
 
515
  # Extract only the 'content' field from each conversation item
516
- # This simplifies the structure and avoids potential NoneType errors
517
  try:
518
  # Convert conversations to the simple format with only content
519
  simplified_conversations = []
520
  for item in raw_conversations:
521
- if isinstance(item, dict) and "content" in item:
522
- # Keep only the content field
523
- content = item["content"]
524
- simplified_conversations.append({"role": "user", "content": content})
 
 
 
 
 
 
 
 
525
  elif isinstance(item, str):
526
  # If it's just a string, treat it as content
527
  simplified_conversations.append({"role": "user", "content": item})
528
  else:
529
- logger.warning(f"Skipping invalid conversation item: {item}")
530
 
531
  # Skip if no valid conversations after filtering
532
  if not simplified_conversations:
@@ -536,62 +555,66 @@ class SimpleDataCollator:
536
 
537
  # Log the simplified content for debugging
538
  if len(simplified_conversations) > 0:
539
- first_content = simplified_conversations[0]["content"]
540
- logger.debug(f"First content: {first_content[:50]}...")
 
541
 
542
  # Let tokenizer handle the simplified conversations
543
- inputs = self.tokenizer.apply_chat_template(
544
- simplified_conversations,
545
- return_tensors=None,
546
- add_generation_prompt=False
547
- )
548
- except Exception as chat_error:
549
- # Fallback if apply_chat_template fails
550
- logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)}")
551
-
552
- # Create a basic representation of just the content
553
- conversation_text = ""
554
- for msg in raw_conversations:
555
- if isinstance(msg, dict) and 'content' in msg:
556
- conversation_text += msg['content'] + "\n\n"
557
- elif isinstance(msg, str):
558
- conversation_text += msg + "\n\n"
559
-
560
- # Basic tokenization
561
- inputs = self.tokenizer(
562
- conversation_text,
563
- add_special_tokens=True,
564
- return_tensors=None
565
- )
566
-
567
- # Apply length cap if needed (shouldn't be necessary for pre-audited data)
568
- if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
569
- logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
570
- inputs = inputs[:self.max_seq_length]
571
 
572
- # Create attention mask (1 for all tokens)
573
- attention_mask = [1] * len(inputs)
574
-
575
- if len(inputs) > 0:
576
- # For causal language modeling, labels are the same as inputs
577
- labels = inputs.copy()
578
-
579
- batch["input_ids"].append(inputs)
580
- batch["attention_mask"].append(attention_mask)
581
- batch["labels"].append(labels)
582
 
583
- self.stats["processed"] += 1
584
- self.stats["total_tokens"] += len(inputs)
585
 
586
- # Debug logging for first few examples
587
- log_samples = self.dataset_config.get("validation", {}).get("log_samples", 3)
588
- if self.stats["processed"] <= log_samples:
589
- logger.info(f"Example {self.stats['processed']}:")
590
- logger.info(f"Paper ID: {paper_id}")
591
- logger.info(f"Token count: {len(inputs)}")
592
- logger.info(f"Conversation entries: {len(raw_conversations)}")
593
- else:
 
 
 
 
 
 
 
 
594
  self.stats["skipped"] += 1
 
 
595
  except Exception as e:
596
  logger.warning(f"Error processing example: {str(e)[:100]}...")
597
  logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
@@ -758,7 +781,22 @@ def check_dependencies():
758
  logger.info("flash-attn found. Flash attention will be used for faster training.")
759
  else:
760
  logger.warning("flash-attn not found. Training will work but may be slower.")
761
- logger.warning("To use flash attention, install with: pip install flash-attn --no-build-isolation")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762
 
763
  # Additional optional packages that improve performance
764
  if find_spec("bitsandbytes"):
 
432
 
433
  except Exception as e:
434
  logger.error(f"Error loading dataset: {str(e)}")
435
+ return 1
436
 
437
  def format_phi_chat(messages, dataset_config):
438
  """Format messages according to phi-4's chat template and dataset config."""
 
502
 
503
  for example in features:
504
  try:
505
+ # Get ID for logging
506
+ paper_id = example.get("article_id", example.get("id", "unknown"))
507
 
508
+ # Safely get conversations with explicit None check
509
+ raw_conversations = example.get("conversations")
510
+ if raw_conversations is None:
511
+ logger.warning(f"Conversations is None for example {paper_id}")
512
+ self.stats["skipped"] += 1
513
+ continue
514
+
515
+ # Ensure conversations is a list
516
+ if not isinstance(raw_conversations, list):
517
+ logger.warning(f"Conversations is not a list for example {paper_id} (type: {type(raw_conversations)})")
518
+ self.stats["skipped"] += 1
519
+ continue
520
+
521
+ # Check for empty conversations list
522
  if not raw_conversations:
523
+ logger.warning(f"Empty conversations list for example {paper_id}")
524
  self.stats["skipped"] += 1
525
  continue
526
 
527
  # Extract only the 'content' field from each conversation item
 
528
  try:
529
  # Convert conversations to the simple format with only content
530
  simplified_conversations = []
531
  for item in raw_conversations:
532
+ # Skip None items
533
+ if item is None:
534
+ logger.warning(f"Skipping None conversation item in example {paper_id}")
535
+ continue
536
+
537
+ if isinstance(item, dict):
538
+ # Get content with explicit None check
539
+ content = item.get("content")
540
+ if content is not None:
541
+ simplified_conversations.append({"role": "user", "content": content})
542
+ else:
543
+ logger.warning(f"Skipping conversation item with None content in example {paper_id}")
544
  elif isinstance(item, str):
545
  # If it's just a string, treat it as content
546
  simplified_conversations.append({"role": "user", "content": item})
547
  else:
548
+ logger.warning(f"Skipping invalid conversation item type: {type(item)} in example {paper_id}")
549
 
550
  # Skip if no valid conversations after filtering
551
  if not simplified_conversations:
 
555
 
556
  # Log the simplified content for debugging
557
  if len(simplified_conversations) > 0:
558
+ first_content = simplified_conversations[0].get("content", "")
559
+ if first_content:
560
+ logger.debug(f"First content: {first_content[:50]}...")
561
 
562
  # Let tokenizer handle the simplified conversations
563
+ try:
564
+ inputs = self.tokenizer.apply_chat_template(
565
+ simplified_conversations,
566
+ return_tensors=None,
567
+ add_generation_prompt=False
568
+ )
569
+ except Exception as chat_error:
570
+ # Fallback if apply_chat_template fails
571
+ logger.warning(f"Chat template application failed for example {paper_id}: {str(chat_error)}")
572
+
573
+ # Create a basic representation of just the content
574
+ conversation_text = ""
575
+ for msg in simplified_conversations:
576
+ if isinstance(msg, dict) and msg.get("content"):
577
+ conversation_text += msg["content"] + "\n\n"
578
+
579
+ if not conversation_text:
580
+ logger.warning(f"No valid content to tokenize in example {paper_id}")
581
+ self.stats["skipped"] += 1
582
+ continue
583
+
584
+ # Basic tokenization
585
+ inputs = self.tokenizer(
586
+ conversation_text,
587
+ add_special_tokens=True,
588
+ return_tensors=None
589
+ )
 
590
 
591
+ # Apply length cap if needed
592
+ if self.max_seq_length > 0 and len(inputs) > self.max_seq_length:
593
+ logger.warning(f"Example {paper_id} exceeds max_seq_length ({len(inputs)} > {self.max_seq_length})")
594
+ inputs = inputs[:self.max_seq_length]
 
 
 
 
 
 
595
 
596
+ # Create attention mask (1 for all tokens)
597
+ attention_mask = [1] * len(inputs)
598
 
599
+ if len(inputs) > 0:
600
+ # For causal language modeling, labels are the same as inputs
601
+ labels = inputs.copy()
602
+
603
+ batch["input_ids"].append(inputs)
604
+ batch["attention_mask"].append(attention_mask)
605
+ batch["labels"].append(labels)
606
+
607
+ self.stats["processed"] += 1
608
+ self.stats["total_tokens"] += len(inputs)
609
+ else:
610
+ logger.warning(f"Empty inputs after tokenization for example {paper_id}")
611
+ self.stats["skipped"] += 1
612
+
613
+ except Exception as e:
614
+ logger.warning(f"Error processing conversations in example {paper_id}: {str(e)}")
615
  self.stats["skipped"] += 1
616
+ continue
617
+
618
  except Exception as e:
619
  logger.warning(f"Error processing example: {str(e)[:100]}...")
620
  logger.warning(f"Problematic example ID: {example.get('id', 'unknown')}")
 
781
  logger.info("flash-attn found. Flash attention will be used for faster training.")
782
  else:
783
  logger.warning("flash-attn not found. Training will work but may be slower.")
784
+ logger.warning("Attempting to install flash-attn automatically...")
785
+
786
+ try:
787
+ import subprocess
788
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"])
789
+ logger.info("Successfully installed flash-attn!")
790
+
791
+ # Try to import it now that it's installed
792
+ try:
793
+ import flash_attn
794
+ logger.info("flash-attn imported successfully after installation.")
795
+ except ImportError:
796
+ logger.warning("flash-attn installed but import failed - may require restart.")
797
+ except Exception as e:
798
+ logger.warning(f"Failed to install flash-attn: {str(e)}")
799
+ logger.warning("To manually install flash attention, run: pip install flash-attn --no-build-isolation")
800
 
801
  # Additional optional packages that improve performance
802
  if find_spec("bitsandbytes"):