Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gitignore +3 -0
- README.md +192 -12
- app.py +162 -0
- check_tokenization.py +103 -0
- dataset_config.json +40 -0
- hardware_config.json +49 -0
- requirements.txt +20 -0
- run_transformers_training.py +615 -0
- transformers_config.json +75 -0
- update_space.py +219 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*.pyc
|
3 |
+
__pycache__
|
README.md
CHANGED
@@ -1,12 +1,192 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Phase 1: Domain Adaptation (Unsupervised)
|
2 |
+
|
3 |
+
This directory contains the code and configuration for domain adaptation of the phi-4-unsloth-bnb-4bit model to the cognitive science domain. This phase produces our domain-adapted model: [George-API/phi-4-research-assistant](https://huggingface.co/George-API/phi-4-research-assistant).
|
4 |
+
|
5 |
+
## Overview
|
6 |
+
|
7 |
+
Domain adaptation is the first phase of our training process, where we expose the model to a large corpus of cognitive science texts to help it learn domain-specific vocabulary, concepts, and patterns. This phase prepares the model for the more focused supervised fine-tuning in Phase 2.
|
8 |
+
|
9 |
+
## Files
|
10 |
+
|
11 |
+
### Core Training Files
|
12 |
+
- `run_transformers_training.py`: Main script for domain adaptation
|
13 |
+
- `transformers_config.json`: Model and training parameters
|
14 |
+
- `hardware_config.json`: Hardware-specific optimizations
|
15 |
+
- `dataset_config.json`: Dataset loading and processing settings
|
16 |
+
- `requirements.txt`: Required Python packages
|
17 |
+
|
18 |
+
### Analysis & Utilities
|
19 |
+
- `check_tokenization.py`: Script to analyze token distributions
|
20 |
+
- `update_space.py`: Hugging Face Space update utility
|
21 |
+
- `.env`: Environment variables (API tokens, etc.)
|
22 |
+
|
23 |
+
## Setup
|
24 |
+
|
25 |
+
1. **Environment Setup**:
|
26 |
+
```bash
|
27 |
+
python -m venv venv
|
28 |
+
source venv/bin/activate # or `venv\Scripts\activate` on Windows
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
2. **Environment Variables**:
|
33 |
+
Create `.env` file with:
|
34 |
+
```
|
35 |
+
HUGGINGFACE_TOKEN=your_token_here
|
36 |
+
```
|
37 |
+
|
38 |
+
3. **Verify Setup**:
|
39 |
+
```bash
|
40 |
+
python check_tokenization.py # Ensures tokenizer works
|
41 |
+
```
|
42 |
+
|
43 |
+
## How It Works
|
44 |
+
|
45 |
+
1. **Data Loading**: Loads pre-tokenized data from the Hugging Face dataset
|
46 |
+
2. **Sequential Processing**: Processes data in order, maintaining the integrity of research papers
|
47 |
+
3. **Efficient Training**: Uses pre-quantized Unsloth 4-bit model for memory-efficient and faster training
|
48 |
+
4. **Checkpointing**: Saves regular checkpoints and pushes to Hub
|
49 |
+
5. **Monitoring**: Logs detailed metrics and statistics during training
|
50 |
+
6. **Model Publishing**: Pushes the trained model to Hugging Face Hub
|
51 |
+
|
52 |
+
## Key Features
|
53 |
+
|
54 |
+
### Memory-Efficient Training
|
55 |
+
|
56 |
+
The training setup is optimized for A10G GPUs:
|
57 |
+
- Uses pre-quantized 4-bit model (no additional quantization needed)
|
58 |
+
- Gradient checkpointing for memory efficiency
|
59 |
+
- Flash attention for faster training
|
60 |
+
- bfloat16 mixed precision training
|
61 |
+
- Optimized batch sizes for maximum throughput
|
62 |
+
|
63 |
+
### Sequential Processing
|
64 |
+
|
65 |
+
The training script ensures that chunks from the same research paper are processed together by:
|
66 |
+
- Sorting the dataset by ID
|
67 |
+
- Using a SequentialSampler to maintain order
|
68 |
+
- Processing chunks sequentially (average 1,673 tokens per chunk)
|
69 |
+
|
70 |
+
### Data Collator
|
71 |
+
|
72 |
+
The `SimpleDataCollator` class:
|
73 |
+
- Preserves pre-tokenized data format
|
74 |
+
- Processes each entry independently
|
75 |
+
- Provides detailed logging of processing statistics
|
76 |
+
- Handles errors gracefully
|
77 |
+
|
78 |
+
### Checkpointing
|
79 |
+
|
80 |
+
The training process saves checkpoints:
|
81 |
+
- Every 200 steps
|
82 |
+
- Pushes to Hub on every save
|
83 |
+
- Maintains up to 5 recent checkpoints
|
84 |
+
- Automatically resumes from the latest checkpoint if interrupted
|
85 |
+
|
86 |
+
## Hardware Requirements
|
87 |
+
|
88 |
+
This training setup is optimized for:
|
89 |
+
- 2x NVIDIA A10G GPUs (24GB VRAM each)
|
90 |
+
- 92GB System RAM
|
91 |
+
- CUDA 11.8 or higher
|
92 |
+
|
93 |
+
Memory breakdown per GPU:
|
94 |
+
- Model (4-bit): ~3.5GB
|
95 |
+
- Optimizer states: ~1GB
|
96 |
+
- Batch memory: ~2GB
|
97 |
+
- Peak usage: 18-20GB
|
98 |
+
- Safe headroom: 4-6GB
|
99 |
+
|
100 |
+
## Configuration
|
101 |
+
|
102 |
+
Key parameters in `transformers_config.json`:
|
103 |
+
|
104 |
+
- `model_name`: unsloth/phi-4-unsloth-bnb-4bit
|
105 |
+
- `learning_rate`: 2e-5
|
106 |
+
- `num_train_epochs`: 3
|
107 |
+
- `per_device_train_batch_size`: 16
|
108 |
+
- `gradient_accumulation_steps`: 4
|
109 |
+
- `effective_batch_size`: 128 (16 * 4 * 2 GPUs)
|
110 |
+
- `max_seq_length`: 2048
|
111 |
+
- `lr_scheduler_type`: "cosine"
|
112 |
+
- `warmup_ratio`: 0.03
|
113 |
+
- `neftune_noise_alpha`: 5
|
114 |
+
|
115 |
+
The configuration is optimized for:
|
116 |
+
- Maximum memory efficiency with pre-quantized model
|
117 |
+
- Stable training with cosine learning rate schedule
|
118 |
+
- Effective gradient updates with accumulation
|
119 |
+
- Regular checkpointing and Hub updates
|
120 |
+
|
121 |
+
## Running Domain Adaptation
|
122 |
+
|
123 |
+
To start domain adaptation:
|
124 |
+
|
125 |
+
```bash
|
126 |
+
python run_transformers_training.py
|
127 |
+
```
|
128 |
+
|
129 |
+
The script will:
|
130 |
+
1. Load the pre-quantized model and dataset
|
131 |
+
2. Apply optimized training parameters
|
132 |
+
3. Process the data sequentially
|
133 |
+
4. Train the model for 3 epochs
|
134 |
+
5. Save and push checkpoints to Hub regularly
|
135 |
+
|
136 |
+
## Using the Model
|
137 |
+
|
138 |
+
After training, you can use the domain-adapted model:
|
139 |
+
|
140 |
+
```python
|
141 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
142 |
+
|
143 |
+
# Load the domain-adapted model
|
144 |
+
model_name = "George-API/phi-4-research-assistant"
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
146 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
147 |
+
device_map="auto",
|
148 |
+
torch_dtype="bfloat16")
|
149 |
+
|
150 |
+
# Generate text
|
151 |
+
input_text = "The hippocampus is involved in"
|
152 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
153 |
+
outputs = model.generate(**inputs, max_length=100)
|
154 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
155 |
+
```
|
156 |
+
|
157 |
+
## Chat Format Example
|
158 |
+
|
159 |
+
Phi-4 works best with its native chat template:
|
160 |
+
|
161 |
+
```python
|
162 |
+
from transformers import pipeline
|
163 |
+
|
164 |
+
pipeline = pipeline(
|
165 |
+
"text-generation",
|
166 |
+
model="George-API/phi-4-research-assistant",
|
167 |
+
model_kwargs={"torch_dtype": "bfloat16"},
|
168 |
+
device_map="auto",
|
169 |
+
)
|
170 |
+
|
171 |
+
messages = [
|
172 |
+
{"role": "system", "content": "You are an expert in cognitive science."},
|
173 |
+
{"role": "user", "content": "Explain the role of the hippocampus in memory formation."},
|
174 |
+
]
|
175 |
+
|
176 |
+
outputs = pipeline(messages, max_new_tokens=256)
|
177 |
+
print(outputs[0]["generated_text"])
|
178 |
+
```
|
179 |
+
|
180 |
+
## Expected Outcomes
|
181 |
+
|
182 |
+
After domain adaptation, the model should:
|
183 |
+
- Have a better understanding of cognitive science terminology
|
184 |
+
- Show improved performance on domain-specific tasks
|
185 |
+
- Be ready for supervised fine-tuning in Phase 2
|
186 |
+
|
187 |
+
## Next Steps
|
188 |
+
|
189 |
+
After completing domain adaptation:
|
190 |
+
1. Evaluate the model's performance on cognitive science texts
|
191 |
+
2. Proceed to Phase 2 (Supervised Fine-Tuning)
|
192 |
+
3. Use TensorBoard to analyze training metrics
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
import re
|
7 |
+
from threading import Thread
|
8 |
+
import datetime
|
9 |
+
import torch
|
10 |
+
import threading
|
11 |
+
|
12 |
+
def load_env_variables():
|
13 |
+
"""Load environment variables from system or .env file."""
|
14 |
+
if os.environ.get("SPACE_ID"):
|
15 |
+
print("Running in Hugging Face Space")
|
16 |
+
if "/" in os.environ.get("SPACE_ID", ""):
|
17 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
18 |
+
os.environ["HF_USERNAME"] = username
|
19 |
+
print(f"Set HF_USERNAME from SPACE_ID: {username}")
|
20 |
+
else:
|
21 |
+
try:
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
env_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), ".env")
|
24 |
+
if os.path.exists(env_path):
|
25 |
+
load_dotenv(env_path)
|
26 |
+
print(f"Loaded environment variables from {env_path}")
|
27 |
+
except ImportError:
|
28 |
+
print("python-dotenv not installed, skipping .env loading")
|
29 |
+
|
30 |
+
def check_environment():
|
31 |
+
"""Check the environment for GPU availability and other requirements."""
|
32 |
+
env_info = {
|
33 |
+
"System": {
|
34 |
+
"Platform": sys.platform,
|
35 |
+
"Python Version": sys.version.split()[0]
|
36 |
+
},
|
37 |
+
"GPU": {
|
38 |
+
"CUDA Available": torch.cuda.is_available(),
|
39 |
+
"Device Count": torch.cuda.device_count() if torch.cuda.is_available() else 0
|
40 |
+
},
|
41 |
+
"Environment Variables": {
|
42 |
+
"HF_TOKEN": bool(os.environ.get("HF_TOKEN")),
|
43 |
+
"HF_USERNAME": bool(os.environ.get("HF_USERNAME")),
|
44 |
+
"HF_SPACE_NAME": bool(os.environ.get("HF_SPACE_NAME"))
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
if torch.cuda.is_available():
|
49 |
+
env_info["GPU"]["Device Name"] = torch.cuda.get_device_name(0)
|
50 |
+
env_info["GPU"]["Memory (GB)"] = round(torch.cuda.get_device_properties(0).total_memory / (1024**3), 2)
|
51 |
+
|
52 |
+
return env_info
|
53 |
+
|
54 |
+
def run_training_process():
|
55 |
+
"""Run the training process using the configuration files."""
|
56 |
+
try:
|
57 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
58 |
+
training_script = os.path.join(current_dir, "run_transformers_training.py")
|
59 |
+
|
60 |
+
# Start the training process
|
61 |
+
process = subprocess.Popen(
|
62 |
+
[sys.executable, training_script],
|
63 |
+
stdout=subprocess.PIPE,
|
64 |
+
stderr=subprocess.STDOUT,
|
65 |
+
text=True,
|
66 |
+
bufsize=1
|
67 |
+
)
|
68 |
+
|
69 |
+
# Process the output line by line
|
70 |
+
for line in process.stdout:
|
71 |
+
print(line.strip())
|
72 |
+
|
73 |
+
process.wait()
|
74 |
+
return process.returncode
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error in training process: {e}")
|
77 |
+
return 1
|
78 |
+
|
79 |
+
def start_training(learning_rate, num_train_epochs, per_device_train_batch_size,
|
80 |
+
gradient_accumulation_steps):
|
81 |
+
"""Start the training process with the specified parameters."""
|
82 |
+
try:
|
83 |
+
load_env_variables()
|
84 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
85 |
+
|
86 |
+
# Load and update transformers config
|
87 |
+
with open(os.path.join(current_dir, "transformers_config.json"), "r") as f:
|
88 |
+
config = json.load(f)
|
89 |
+
|
90 |
+
# Update training parameters
|
91 |
+
config["training"].update({
|
92 |
+
"num_train_epochs": num_train_epochs,
|
93 |
+
"learning_rate": learning_rate,
|
94 |
+
"per_device_train_batch_size": per_device_train_batch_size,
|
95 |
+
"gradient_accumulation_steps": gradient_accumulation_steps
|
96 |
+
})
|
97 |
+
|
98 |
+
# Update hub settings if username is available
|
99 |
+
if os.environ.get("HF_USERNAME"):
|
100 |
+
config["huggingface_hub"].update({
|
101 |
+
"hub_model_id": f"{os.environ['HF_USERNAME']}/Phi4-Cognitive-Science"
|
102 |
+
})
|
103 |
+
|
104 |
+
# Save updated config
|
105 |
+
with open(os.path.join(current_dir, "transformers_config.json"), "w") as f:
|
106 |
+
json.dump(config, f, indent=4)
|
107 |
+
|
108 |
+
# Start training in a separate thread
|
109 |
+
thread = threading.Thread(target=run_training_process)
|
110 |
+
thread.daemon = True
|
111 |
+
thread.start()
|
112 |
+
|
113 |
+
return "Training started! Check the Hugging Face Space logs for progress."
|
114 |
+
except Exception as e:
|
115 |
+
return f"Error starting training: {str(e)}"
|
116 |
+
|
117 |
+
with gr.Blocks(title="Phi-4 Training Interface") as demo:
|
118 |
+
gr.Markdown("# Phi-4 Unsupervised Training for Cognitive Science")
|
119 |
+
|
120 |
+
with gr.Tab("Training"):
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column():
|
123 |
+
gr.Markdown("## Model Configuration")
|
124 |
+
gr.Markdown("**Model**: unsloth/phi-4-unsloth-bnb-4bit")
|
125 |
+
gr.Markdown("**Dataset**: George-API/cognitive-data")
|
126 |
+
|
127 |
+
gr.Markdown("## Training Parameters")
|
128 |
+
learning_rate = gr.Slider(minimum=1e-6, maximum=1e-4, value=2e-5, step=1e-6,
|
129 |
+
label="Learning Rate")
|
130 |
+
num_train_epochs = gr.Slider(minimum=1, maximum=5, value=3, step=1,
|
131 |
+
label="Number of Epochs")
|
132 |
+
per_device_train_batch_size = gr.Slider(minimum=4, maximum=24, value=12, step=4,
|
133 |
+
label="Per Device Train Batch Size (Unsloth Optimized)")
|
134 |
+
gradient_accumulation_steps = gr.Slider(minimum=1, maximum=8, value=4, step=1,
|
135 |
+
label="Gradient Accumulation Steps")
|
136 |
+
|
137 |
+
start_btn = gr.Button("Start Training", variant="primary")
|
138 |
+
training_output = gr.Textbox(label="Training Output", interactive=False)
|
139 |
+
|
140 |
+
with gr.Tab("Environment"):
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
gr.Markdown("## Environment Information")
|
144 |
+
env_info = gr.JSON(label="Environment Info")
|
145 |
+
check_env_btn = gr.Button("Check Environment")
|
146 |
+
|
147 |
+
# Set up event handlers
|
148 |
+
start_btn.click(
|
149 |
+
fn=start_training,
|
150 |
+
inputs=[learning_rate, num_train_epochs, per_device_train_batch_size, gradient_accumulation_steps],
|
151 |
+
outputs=training_output
|
152 |
+
)
|
153 |
+
|
154 |
+
check_env_btn.click(
|
155 |
+
fn=check_environment,
|
156 |
+
inputs=[],
|
157 |
+
outputs=env_info
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
load_env_variables()
|
162 |
+
demo.launch()
|
check_tokenization.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import json
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
def load_tokenizers():
|
10 |
+
"""Load both tokenizers."""
|
11 |
+
print("Loading tokenizers...")
|
12 |
+
phi_tokenizer = AutoTokenizer.from_pretrained(
|
13 |
+
"unsloth/phi-4-unsloth-bnb-4bit",
|
14 |
+
trust_remote_code=True
|
15 |
+
)
|
16 |
+
deepseek_tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
"deepseek-ai/deepseek-llama-7b-base",
|
18 |
+
trust_remote_code=True
|
19 |
+
)
|
20 |
+
return phi_tokenizer, deepseek_tokenizer
|
21 |
+
|
22 |
+
def analyze_token_counts(jsonl_path, phi_tokenizer, deepseek_tokenizer, sample_size=100):
|
23 |
+
"""Analyze token count differences between tokenizers."""
|
24 |
+
token_counts = {
|
25 |
+
'phi': [],
|
26 |
+
'deepseek': [],
|
27 |
+
'differences': []
|
28 |
+
}
|
29 |
+
|
30 |
+
print(f"Analyzing token counts from {jsonl_path}")
|
31 |
+
with open(jsonl_path, 'r', encoding='utf-8') as f:
|
32 |
+
data = [json.loads(line) for line in f]
|
33 |
+
|
34 |
+
# Take a random sample if sample_size specified
|
35 |
+
if sample_size and sample_size < len(data):
|
36 |
+
data = np.random.choice(data, sample_size, replace=False)
|
37 |
+
|
38 |
+
for item in tqdm(data, desc="Processing entries"):
|
39 |
+
text = item.get('text', '') or item.get('content', '')
|
40 |
+
|
41 |
+
# Get token counts
|
42 |
+
phi_tokens = len(phi_tokenizer.encode(text))
|
43 |
+
deepseek_tokens = len(deepseek_tokenizer.encode(text))
|
44 |
+
|
45 |
+
token_counts['phi'].append(phi_tokens)
|
46 |
+
token_counts['deepseek'].append(deepseek_tokens)
|
47 |
+
token_counts['differences'].append(phi_tokens - deepseek_tokens)
|
48 |
+
|
49 |
+
return token_counts
|
50 |
+
|
51 |
+
def plot_comparison(token_counts):
|
52 |
+
"""Create visualization of token count differences."""
|
53 |
+
plt.figure(figsize=(12, 6))
|
54 |
+
|
55 |
+
# Plot token count distributions
|
56 |
+
plt.subplot(1, 2, 1)
|
57 |
+
plt.hist([token_counts['phi'], token_counts['deepseek']],
|
58 |
+
label=['Phi-4', 'DeepSeek'], alpha=0.6)
|
59 |
+
plt.title('Token Count Distribution')
|
60 |
+
plt.xlabel('Number of Tokens')
|
61 |
+
plt.ylabel('Frequency')
|
62 |
+
plt.legend()
|
63 |
+
|
64 |
+
# Plot differences
|
65 |
+
plt.subplot(1, 2, 2)
|
66 |
+
plt.hist(token_counts['differences'], bins=30)
|
67 |
+
plt.title('Token Count Differences\n(Phi-4 minus DeepSeek)')
|
68 |
+
plt.xlabel('Difference in Tokens')
|
69 |
+
plt.ylabel('Frequency')
|
70 |
+
|
71 |
+
plt.tight_layout()
|
72 |
+
plt.savefig('tokenization_analysis.png')
|
73 |
+
print("Saved visualization to tokenization_analysis.png")
|
74 |
+
|
75 |
+
def main():
|
76 |
+
# Load tokenizers
|
77 |
+
phi_tokenizer, deepseek_tokenizer = load_tokenizers()
|
78 |
+
|
79 |
+
# Analyze token counts
|
80 |
+
token_counts = analyze_token_counts(
|
81 |
+
"../../../../data_processing/data/training_data.jsonl",
|
82 |
+
phi_tokenizer,
|
83 |
+
deepseek_tokenizer
|
84 |
+
)
|
85 |
+
|
86 |
+
# Calculate statistics
|
87 |
+
phi_mean = np.mean(token_counts['phi'])
|
88 |
+
deepseek_mean = np.mean(token_counts['deepseek'])
|
89 |
+
diff_mean = np.mean(token_counts['differences'])
|
90 |
+
diff_std = np.std(token_counts['differences'])
|
91 |
+
|
92 |
+
print("\nAnalysis Results:")
|
93 |
+
print(f"Phi-4 average tokens: {phi_mean:.1f}")
|
94 |
+
print(f"DeepSeek average tokens: {deepseek_mean:.1f}")
|
95 |
+
print(f"Average difference: {diff_mean:.1f} ± {diff_std:.1f}")
|
96 |
+
print(f"Max Phi-4 tokens: {max(token_counts['phi'])}")
|
97 |
+
print(f"Max DeepSeek tokens: {max(token_counts['deepseek'])}")
|
98 |
+
|
99 |
+
# Create visualization
|
100 |
+
plot_comparison(token_counts)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
main()
|
dataset_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset": {
|
3 |
+
"name": "George-API/cognitive-data",
|
4 |
+
"split": "train",
|
5 |
+
"column_mapping": {
|
6 |
+
"text": "conversations",
|
7 |
+
"id": "id"
|
8 |
+
},
|
9 |
+
"processing": {
|
10 |
+
"sort_by_id": true,
|
11 |
+
"maintain_paper_order": true,
|
12 |
+
"max_seq_length": 2048
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"data_formatting": {
|
16 |
+
"chat_template": "phi",
|
17 |
+
"roles": {
|
18 |
+
"system": "System: {content}\n\n",
|
19 |
+
"human": "Human: {content}\n\n",
|
20 |
+
"assistant": "Assistant: {content}\n\n"
|
21 |
+
},
|
22 |
+
"metadata_handling": {
|
23 |
+
"include_paper_id": true,
|
24 |
+
"include_chunk_number": true,
|
25 |
+
"metadata_format": "Paper ID: {paper_id} | Chunk: {chunk_number}"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"data_loading": {
|
29 |
+
"batch_size": 16,
|
30 |
+
"shuffle": false,
|
31 |
+
"drop_last": false,
|
32 |
+
"num_workers": 2,
|
33 |
+
"pin_memory": false
|
34 |
+
},
|
35 |
+
"validation": {
|
36 |
+
"log_samples": 3,
|
37 |
+
"log_interval": 50,
|
38 |
+
"metrics": ["processed", "skipped", "avg_tokens", "unique_papers"]
|
39 |
+
}
|
40 |
+
}
|
hardware_config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hardware_name": "2xA10G",
|
3 |
+
"specs": {
|
4 |
+
"gpu_count": 2,
|
5 |
+
"gpu_type": "A10G",
|
6 |
+
"vram_per_gpu": 24,
|
7 |
+
"total_vram": 48,
|
8 |
+
"vcpu_count": 24,
|
9 |
+
"ram": 92
|
10 |
+
},
|
11 |
+
"training_optimizations": {
|
12 |
+
"per_device_batch_size": 16,
|
13 |
+
"gradient_accumulation_steps": 4,
|
14 |
+
"effective_batch_size": 128,
|
15 |
+
"memory_optimizations": {
|
16 |
+
"use_gradient_checkpointing": true,
|
17 |
+
"pin_memory": true,
|
18 |
+
"num_workers": 2
|
19 |
+
},
|
20 |
+
"distributed_settings": {
|
21 |
+
"device_map": "auto",
|
22 |
+
"ddp_find_unused_parameters": false
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"memory_breakdown": {
|
26 |
+
"model_size": "~3.5GB (pre-quantized 4-bit)",
|
27 |
+
"optimizer_states": "~1GB",
|
28 |
+
"batch_memory_per_gpu": "~2GB",
|
29 |
+
"peak_memory_estimate": "18-20GB",
|
30 |
+
"safe_headroom": "4-6GB"
|
31 |
+
},
|
32 |
+
"compute_environment": "A10G_CLOUD",
|
33 |
+
"distributed_type": "DATA_PARALLEL",
|
34 |
+
"mixed_precision": "bf16",
|
35 |
+
"num_gpus": 2,
|
36 |
+
"training_parameters": {
|
37 |
+
"per_device_train_batch_size": 16,
|
38 |
+
"gradient_accumulation_steps": 4,
|
39 |
+
"dataloader_num_workers": 2,
|
40 |
+
"dataloader_pin_memory": true,
|
41 |
+
"gradient_checkpointing": true,
|
42 |
+
"max_grad_norm": 1.0
|
43 |
+
},
|
44 |
+
"memory_optimization": {
|
45 |
+
"offload_to_cpu": false,
|
46 |
+
"use_flash_attention": true,
|
47 |
+
"use_gradient_checkpointing": true
|
48 |
+
}
|
49 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate>=0.27.0
|
2 |
+
bitsandbytes>=0.41.0
|
3 |
+
datasets>=2.15.0
|
4 |
+
filelock>=3.13.1
|
5 |
+
gradio>=5.17.0
|
6 |
+
huggingface-hub>=0.19.0
|
7 |
+
matplotlib>=3.7.0
|
8 |
+
numpy>=1.24.0
|
9 |
+
packaging>=23.0
|
10 |
+
psutil>=5.9.0
|
11 |
+
python-dotenv>=1.0.0
|
12 |
+
pyyaml>=6.0.1
|
13 |
+
regex>=2023.0.0
|
14 |
+
requests>=2.31.0
|
15 |
+
safetensors>=0.4.1
|
16 |
+
tensorboard>=2.15.0
|
17 |
+
torch>=2.0.0
|
18 |
+
tqdm>=4.65.0
|
19 |
+
transformers>=4.36.0
|
20 |
+
typing-extensions>=4.8.0
|
run_transformers_training.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import json
|
7 |
+
import argparse
|
8 |
+
import logging
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import (
|
14 |
+
AutoModelForCausalLM,
|
15 |
+
AutoTokenizer,
|
16 |
+
TrainingArguments,
|
17 |
+
Trainer,
|
18 |
+
TrainerCallback,
|
19 |
+
set_seed,
|
20 |
+
BitsAndBytesConfig
|
21 |
+
)
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(
|
25 |
+
level=logging.INFO,
|
26 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
27 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
28 |
+
)
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
# Check for BitsAndBytes
|
32 |
+
try:
|
33 |
+
from transformers import BitsAndBytesConfig
|
34 |
+
bitsandbytes_available = True
|
35 |
+
except ImportError:
|
36 |
+
bitsandbytes_available = False
|
37 |
+
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
|
38 |
+
|
39 |
+
# Check for PEFT
|
40 |
+
try:
|
41 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
42 |
+
peft_available = True
|
43 |
+
except ImportError:
|
44 |
+
peft_available = False
|
45 |
+
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
|
46 |
+
|
47 |
+
# Import Unsloth
|
48 |
+
try:
|
49 |
+
from unsloth import FastLanguageModel
|
50 |
+
from unsloth.chat_templates import get_chat_template
|
51 |
+
unsloth_available = True
|
52 |
+
except ImportError:
|
53 |
+
unsloth_available = False
|
54 |
+
logger.warning("Unsloth not available. Please install with: pip install unsloth")
|
55 |
+
|
56 |
+
def load_env_variables():
|
57 |
+
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
|
58 |
+
# Check if we're running in a Hugging Face Space
|
59 |
+
if os.environ.get("SPACE_ID"):
|
60 |
+
logging.info("Running in Hugging Face Space")
|
61 |
+
|
62 |
+
# Log the presence of variables (without revealing values)
|
63 |
+
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
|
64 |
+
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
|
65 |
+
|
66 |
+
# If username is not set, try to extract from SPACE_ID
|
67 |
+
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
|
68 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
69 |
+
os.environ["HF_USERNAME"] = username
|
70 |
+
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
|
71 |
+
else:
|
72 |
+
# Try to load from .env file if not in a Space
|
73 |
+
try:
|
74 |
+
from dotenv import load_dotenv
|
75 |
+
# Updated path to .env file in the new directory structure
|
76 |
+
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
|
77 |
+
if os.path.exists(env_path):
|
78 |
+
load_dotenv(env_path)
|
79 |
+
logging.info(f"Loaded environment variables from {env_path}")
|
80 |
+
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
|
81 |
+
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
|
82 |
+
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
|
83 |
+
else:
|
84 |
+
logging.warning(f"No .env file found at {env_path}")
|
85 |
+
except ImportError:
|
86 |
+
logging.warning("python-dotenv not installed, not loading from .env file")
|
87 |
+
|
88 |
+
if not os.environ.get("HF_USERNAME"):
|
89 |
+
logger.warning("HF_USERNAME is not set. Using default username.")
|
90 |
+
|
91 |
+
if not os.environ.get("HF_SPACE_NAME"):
|
92 |
+
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
|
93 |
+
|
94 |
+
# Set HF_TOKEN for huggingface_hub
|
95 |
+
if os.environ.get("HF_TOKEN"):
|
96 |
+
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
|
97 |
+
|
98 |
+
def load_configs(base_path):
|
99 |
+
"""Load all configuration files."""
|
100 |
+
configs = {}
|
101 |
+
|
102 |
+
# List of config files to load
|
103 |
+
config_files = [
|
104 |
+
"transformers_config.json",
|
105 |
+
"hardware_config.json",
|
106 |
+
"dataset_config.json"
|
107 |
+
]
|
108 |
+
|
109 |
+
for config_file in config_files:
|
110 |
+
file_path = os.path.join(base_path, config_file)
|
111 |
+
try:
|
112 |
+
with open(file_path, "r") as f:
|
113 |
+
config_name = config_file.replace("_config.json", "")
|
114 |
+
configs[config_name] = json.load(f)
|
115 |
+
logger.info(f"Loaded {config_name} configuration from {file_path}")
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error loading {config_file}: {e}")
|
118 |
+
raise
|
119 |
+
|
120 |
+
return configs
|
121 |
+
|
122 |
+
def parse_args():
|
123 |
+
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
|
124 |
+
parser.add_argument("--config_dir", type=str, default=".", help="Directory containing configuration files")
|
125 |
+
return parser.parse_args()
|
126 |
+
|
127 |
+
def load_model_and_tokenizer(config):
|
128 |
+
"""Load model and tokenizer with proper error handling and optimizations."""
|
129 |
+
try:
|
130 |
+
if config.get("use_unsloth", False) and unsloth_available:
|
131 |
+
logger.info("Using Unsloth optimizations")
|
132 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
133 |
+
model_name=config.get("model_name"),
|
134 |
+
max_seq_length=config.get("max_seq_length", 2048),
|
135 |
+
dtype=None, # Let Unsloth choose optimal dtype
|
136 |
+
load_in_4bit=config.get("load_in_4bit", True),
|
137 |
+
device_map="auto",
|
138 |
+
)
|
139 |
+
|
140 |
+
# Apply Unsloth's training optimizations with config parameters
|
141 |
+
model = FastLanguageModel.get_peft_model(
|
142 |
+
model,
|
143 |
+
r=config.get("unsloth_r", 32),
|
144 |
+
target_modules=config.get("unsloth_target_modules",
|
145 |
+
["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]),
|
146 |
+
lora_alpha=config.get("unsloth_alpha", 16),
|
147 |
+
lora_dropout=config.get("unsloth_dropout", 0.05),
|
148 |
+
bias="none",
|
149 |
+
use_gradient_checkpointing=config.get("gradient_checkpointing", True),
|
150 |
+
random_state=config.get("seed", 42),
|
151 |
+
)
|
152 |
+
logger.info("Unsloth optimizations applied successfully")
|
153 |
+
else:
|
154 |
+
if config.get("use_unsloth", False):
|
155 |
+
logger.warning("Unsloth requested but not available. Falling back to standard training.")
|
156 |
+
|
157 |
+
# Standard quantization setup
|
158 |
+
quantization_config = None
|
159 |
+
if config.get("load_in_4bit", False) and bitsandbytes_available:
|
160 |
+
logger.info("Using 4-bit quantization")
|
161 |
+
quantization_config = BitsAndBytesConfig(
|
162 |
+
load_in_4bit=True,
|
163 |
+
bnb_4bit_quant_type="nf4",
|
164 |
+
bnb_4bit_compute_dtype=torch.float16,
|
165 |
+
bnb_4bit_use_double_quant=True
|
166 |
+
)
|
167 |
+
|
168 |
+
# Load model with standard settings
|
169 |
+
model = AutoModelForCausalLM.from_pretrained(
|
170 |
+
config.get("model_name"),
|
171 |
+
quantization_config=quantization_config,
|
172 |
+
device_map="auto",
|
173 |
+
trust_remote_code=config.get("trust_remote_code", True),
|
174 |
+
use_cache=not config.get("gradient_checkpointing", True)
|
175 |
+
)
|
176 |
+
|
177 |
+
# Load tokenizer
|
178 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
179 |
+
config.get("model_name"),
|
180 |
+
use_fast=config.get("use_fast_tokenizer", True),
|
181 |
+
trust_remote_code=config.get("trust_remote_code", True)
|
182 |
+
)
|
183 |
+
|
184 |
+
# Enable gradient checkpointing if requested
|
185 |
+
if config.get("gradient_checkpointing", True) and hasattr(model, "gradient_checkpointing_enable"):
|
186 |
+
model.gradient_checkpointing_enable(use_reentrant=False)
|
187 |
+
logger.info("Gradient checkpointing enabled")
|
188 |
+
|
189 |
+
# Set up tokenizer settings
|
190 |
+
if config.get("chat_template"):
|
191 |
+
if unsloth_available and config.get("use_unsloth", False):
|
192 |
+
chat_template = get_chat_template("phi")
|
193 |
+
tokenizer.chat_template = chat_template
|
194 |
+
else:
|
195 |
+
tokenizer.chat_template = config.get("chat_template")
|
196 |
+
logger.info(f"Set chat template to {config.get('chat_template')}")
|
197 |
+
|
198 |
+
# Ensure proper token settings
|
199 |
+
if tokenizer.pad_token_id is None:
|
200 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
201 |
+
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
|
202 |
+
|
203 |
+
return model, tokenizer
|
204 |
+
|
205 |
+
except Exception as e:
|
206 |
+
logger.error(f"Error in model/tokenizer loading: {str(e)}")
|
207 |
+
raise
|
208 |
+
|
209 |
+
def load_dataset_with_mapping(dataset_config):
|
210 |
+
"""Load and prepare dataset with proper column mapping."""
|
211 |
+
try:
|
212 |
+
# Load dataset
|
213 |
+
dataset = load_dataset(
|
214 |
+
dataset_config["dataset"]["name"],
|
215 |
+
split=dataset_config["dataset"]["split"]
|
216 |
+
)
|
217 |
+
logger.info(f"Dataset loaded successfully with {len(dataset)} examples")
|
218 |
+
|
219 |
+
# Apply column mapping if specified
|
220 |
+
if "column_mapping" in dataset_config["dataset"]:
|
221 |
+
mapping = dataset_config["dataset"]["column_mapping"]
|
222 |
+
dataset = dataset.rename_columns({v: k for k, v in mapping.items()})
|
223 |
+
logger.info(f"Applied column mapping: {mapping}")
|
224 |
+
|
225 |
+
# Sort dataset if required
|
226 |
+
if dataset_config["dataset"]["processing"]["sort_by_id"]:
|
227 |
+
logger.info("Sorting dataset by ID to maintain paper chunk order")
|
228 |
+
dataset = dataset.sort("id")
|
229 |
+
|
230 |
+
# Log first few IDs to verify sorting
|
231 |
+
sample_ids = [example["id"] for example in dataset.select(range(min(5, len(dataset))))]
|
232 |
+
logger.info(f"First few IDs after sorting: {sample_ids}")
|
233 |
+
|
234 |
+
return dataset
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
logger.error(f"Error loading dataset: {str(e)}")
|
238 |
+
raise
|
239 |
+
|
240 |
+
def main():
|
241 |
+
# Set up logging
|
242 |
+
logger.info("Starting training process")
|
243 |
+
|
244 |
+
# Parse arguments
|
245 |
+
args = parse_args()
|
246 |
+
|
247 |
+
# Load environment variables
|
248 |
+
load_env_variables()
|
249 |
+
|
250 |
+
# Load all configurations
|
251 |
+
try:
|
252 |
+
configs = load_configs(args.config_dir)
|
253 |
+
logger.info("All configurations loaded successfully")
|
254 |
+
|
255 |
+
# Extract specific configs
|
256 |
+
model_config = configs["transformers"]
|
257 |
+
hardware_config = configs["hardware"]
|
258 |
+
dataset_config = configs["dataset"]
|
259 |
+
|
260 |
+
# Apply hardware-specific settings
|
261 |
+
per_device_batch_size = hardware_config["training_optimizations"]["per_device_batch_size"]
|
262 |
+
gradient_accumulation = hardware_config["training_optimizations"]["gradient_accumulation_steps"]
|
263 |
+
|
264 |
+
# Update model config with hardware settings
|
265 |
+
model_config["training"].update({
|
266 |
+
"per_device_train_batch_size": per_device_batch_size,
|
267 |
+
"gradient_accumulation_steps": gradient_accumulation,
|
268 |
+
"gradient_checkpointing": hardware_config["training_optimizations"]["memory_optimizations"]["use_gradient_checkpointing"]
|
269 |
+
})
|
270 |
+
|
271 |
+
except Exception as e:
|
272 |
+
logger.error(f"Error loading configurations: {e}")
|
273 |
+
return 1
|
274 |
+
|
275 |
+
# Set random seed for reproducibility
|
276 |
+
seed = model_config.get("seed", 42)
|
277 |
+
set_seed(seed)
|
278 |
+
logger.info(f"Set random seed to {seed}")
|
279 |
+
|
280 |
+
# Check if we're running in a Hugging Face Space
|
281 |
+
if os.environ.get("SPACE_ID") and not os.environ.get("HF_USERNAME"):
|
282 |
+
# Extract username from SPACE_ID
|
283 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
284 |
+
logger.info(f"Extracted username from SPACE_ID: {username}")
|
285 |
+
|
286 |
+
# Set hub_model_id if not already set and push_to_hub is enabled
|
287 |
+
if model_config.get("push_to_hub", False) and not model_config.get("hub_model_id"):
|
288 |
+
model_name = model_config.get("model_name", "").split("/")[-1]
|
289 |
+
model_config["hub_model_id"] = f"{username}/finetuned-{model_name}"
|
290 |
+
logger.info(f"Set hub_model_id to {model_config['hub_model_id']}")
|
291 |
+
|
292 |
+
# Load model and tokenizer
|
293 |
+
logger.info(f"Loading model: {model_config.get('model_name')}")
|
294 |
+
|
295 |
+
try:
|
296 |
+
model, tokenizer = load_model_and_tokenizer(model_config)
|
297 |
+
logger.info("Model and tokenizer loaded successfully")
|
298 |
+
|
299 |
+
# Prepare model for k-bit training if using PEFT
|
300 |
+
if model_config.get("use_peft", False) and peft_available:
|
301 |
+
logger.info("Preparing model for parameter-efficient fine-tuning")
|
302 |
+
try:
|
303 |
+
model = prepare_model_for_kbit_training(model)
|
304 |
+
|
305 |
+
# Get target modules
|
306 |
+
target_modules = model_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
|
307 |
+
|
308 |
+
# Create LoRA config
|
309 |
+
lora_config = LoraConfig(
|
310 |
+
r=model_config.get("lora_r", 16),
|
311 |
+
lora_alpha=model_config.get("lora_alpha", 32),
|
312 |
+
lora_dropout=model_config.get("lora_dropout", 0.05),
|
313 |
+
bias="none",
|
314 |
+
task_type="CAUSAL_LM",
|
315 |
+
target_modules=target_modules
|
316 |
+
)
|
317 |
+
|
318 |
+
# Apply LoRA to model
|
319 |
+
model = get_peft_model(model, lora_config)
|
320 |
+
logger.info(f"Applied LoRA with r={model_config.get('lora_r', 16)}, alpha={model_config.get('lora_alpha', 32)}")
|
321 |
+
except Exception as e:
|
322 |
+
logger.error(f"Error setting up PEFT: {e}")
|
323 |
+
return 1
|
324 |
+
|
325 |
+
# Load dataset with proper mapping
|
326 |
+
try:
|
327 |
+
dataset = load_dataset_with_mapping(dataset_config)
|
328 |
+
logger.info("Dataset loaded and prepared successfully")
|
329 |
+
except Exception as e:
|
330 |
+
logger.error(f"Error loading dataset: {e}")
|
331 |
+
return 1
|
332 |
+
|
333 |
+
# Simple data collator that processes each entry independently
|
334 |
+
class SimpleDataCollator:
|
335 |
+
def __init__(self, tokenizer):
|
336 |
+
self.tokenizer = tokenizer
|
337 |
+
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
338 |
+
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
339 |
+
self.prompt_counter = 0
|
340 |
+
self.paper_counters = {}
|
341 |
+
logger.info("SimpleDataCollator initialized - using phi-4 chat format")
|
342 |
+
|
343 |
+
def format_phi_chat(self, messages):
|
344 |
+
"""Format messages according to phi-4's chat template."""
|
345 |
+
formatted_chat = ""
|
346 |
+
for message in messages:
|
347 |
+
# Extract role and content
|
348 |
+
if isinstance(message, dict):
|
349 |
+
role = message.get("role", "").lower()
|
350 |
+
content = message.get("content", "")
|
351 |
+
else:
|
352 |
+
role = getattr(message, "role", "").lower()
|
353 |
+
content = getattr(message, "content", "")
|
354 |
+
|
355 |
+
# Format based on role
|
356 |
+
if role == "human" or role == "user":
|
357 |
+
formatted_chat += f"Human: {content}\n\n"
|
358 |
+
elif role == "assistant":
|
359 |
+
formatted_chat += f"Assistant: {content}\n\n"
|
360 |
+
elif role == "system":
|
361 |
+
# For system messages, we prepend them with a special format
|
362 |
+
formatted_chat = f"System: {content}\n\n" + formatted_chat
|
363 |
+
else:
|
364 |
+
logger.warning(f"Unknown role '{role}' - treating as system message")
|
365 |
+
formatted_chat += f"System: {content}\n\n"
|
366 |
+
|
367 |
+
return formatted_chat.strip()
|
368 |
+
|
369 |
+
def __call__(self, features):
|
370 |
+
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
371 |
+
|
372 |
+
for example in features:
|
373 |
+
try:
|
374 |
+
# Get ID and conversation fields
|
375 |
+
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
|
376 |
+
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
|
377 |
+
|
378 |
+
if not conversation:
|
379 |
+
self.stats["skipped"] += 1
|
380 |
+
continue
|
381 |
+
|
382 |
+
# Increment counters
|
383 |
+
self.prompt_counter += 1
|
384 |
+
if paper_id not in self.paper_counters:
|
385 |
+
self.paper_counters[paper_id] = 0
|
386 |
+
self.paper_counters[paper_id] += 1
|
387 |
+
|
388 |
+
# Add metadata as system message
|
389 |
+
metadata = {
|
390 |
+
"role": "system",
|
391 |
+
"content": f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}"
|
392 |
+
}
|
393 |
+
|
394 |
+
# Format the conversation using phi-4's chat template
|
395 |
+
formatted_content = self.format_phi_chat([metadata] + conversation)
|
396 |
+
|
397 |
+
# Tokenize with the model's chat template
|
398 |
+
inputs = self.tokenizer(
|
399 |
+
formatted_content,
|
400 |
+
add_special_tokens=True,
|
401 |
+
truncation=True,
|
402 |
+
max_length=model_config.get("max_seq_length", 2048),
|
403 |
+
return_tensors=None, # Return list instead of tensors
|
404 |
+
)
|
405 |
+
|
406 |
+
input_ids = inputs["input_ids"]
|
407 |
+
attention_mask = inputs["attention_mask"]
|
408 |
+
|
409 |
+
if len(input_ids) > 0:
|
410 |
+
# For causal language modeling, labels are the same as inputs
|
411 |
+
labels = input_ids.copy()
|
412 |
+
|
413 |
+
batch["input_ids"].append(input_ids)
|
414 |
+
batch["attention_mask"].append(attention_mask)
|
415 |
+
batch["labels"].append(labels)
|
416 |
+
|
417 |
+
self.stats["processed"] += 1
|
418 |
+
self.stats["total_tokens"] += len(input_ids)
|
419 |
+
|
420 |
+
# Debug logging for first few examples
|
421 |
+
if self.stats["processed"] <= 3:
|
422 |
+
logger.info(f"Example {self.stats['processed']} format:")
|
423 |
+
logger.info(f"Paper ID: {paper_id} | Chunk: {self.paper_counters[paper_id]}")
|
424 |
+
logger.info(f"Token count: {len(input_ids)}")
|
425 |
+
logger.info(f"Content preview:\n{formatted_content[:500]}...")
|
426 |
+
else:
|
427 |
+
self.stats["skipped"] += 1
|
428 |
+
|
429 |
+
except Exception as e:
|
430 |
+
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
431 |
+
self.stats["skipped"] += 1
|
432 |
+
continue
|
433 |
+
|
434 |
+
# Handle empty batches
|
435 |
+
if not batch["input_ids"]:
|
436 |
+
logger.warning("Empty batch, returning dummy tensors")
|
437 |
+
return {
|
438 |
+
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
439 |
+
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
440 |
+
"labels": torch.zeros((1, 1), dtype=torch.long)
|
441 |
+
}
|
442 |
+
|
443 |
+
# Pad the batch
|
444 |
+
max_length = max(len(ids) for ids in batch["input_ids"])
|
445 |
+
|
446 |
+
for i in range(len(batch["input_ids"])):
|
447 |
+
padding_length = max_length - len(batch["input_ids"][i])
|
448 |
+
if padding_length > 0:
|
449 |
+
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
450 |
+
batch["attention_mask"][i].extend([0] * padding_length)
|
451 |
+
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding
|
452 |
+
|
453 |
+
# Convert to tensors
|
454 |
+
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
455 |
+
|
456 |
+
# Log stats periodically
|
457 |
+
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
|
458 |
+
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
459 |
+
f"skipped={self.stats['skipped']}, "
|
460 |
+
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
461 |
+
f"unique_papers={len(self.paper_counters)}")
|
462 |
+
|
463 |
+
return batch
|
464 |
+
|
465 |
+
# Create data collator
|
466 |
+
data_collator = SimpleDataCollator(tokenizer)
|
467 |
+
|
468 |
+
# Simple logging callback
|
469 |
+
class LoggingCallback(TrainerCallback):
|
470 |
+
def __init__(self):
|
471 |
+
self.last_log_time = datetime.now()
|
472 |
+
self.training_start_time = datetime.now()
|
473 |
+
|
474 |
+
def on_step_end(self, args, state, control, **kwargs):
|
475 |
+
# Log every 50 steps or every 5 minutes, whichever comes first
|
476 |
+
current_time = datetime.now()
|
477 |
+
time_diff = (current_time - self.last_log_time).total_seconds()
|
478 |
+
elapsed_time = (current_time - self.training_start_time).total_seconds() / 60 # in minutes
|
479 |
+
|
480 |
+
if state.global_step % 50 == 0 or time_diff > 300: # 300 seconds = 5 minutes
|
481 |
+
loss = state.log_history[-1]['loss'] if state.log_history else 'N/A'
|
482 |
+
lr = state.log_history[-1]['learning_rate'] if state.log_history else 'N/A'
|
483 |
+
|
484 |
+
if isinstance(loss, float):
|
485 |
+
loss_str = f"{loss:.4f}"
|
486 |
+
else:
|
487 |
+
loss_str = str(loss)
|
488 |
+
|
489 |
+
if isinstance(lr, float):
|
490 |
+
lr_str = f"{lr:.8f}"
|
491 |
+
else:
|
492 |
+
lr_str = str(lr)
|
493 |
+
|
494 |
+
logger.info(f"Step: {state.global_step} | Loss: {loss_str} | LR: {lr_str} | Elapsed: {elapsed_time:.2f} min")
|
495 |
+
self.last_log_time = current_time
|
496 |
+
|
497 |
+
# Set up training arguments
|
498 |
+
logger.info("Setting up training arguments")
|
499 |
+
training_args = TrainingArguments(
|
500 |
+
output_dir=model_config.get("output_dir", "./results"),
|
501 |
+
num_train_epochs=model_config.get("num_train_epochs", 3),
|
502 |
+
per_device_train_batch_size=model_config.get("per_device_train_batch_size", 4), # Use config value, can be > 1
|
503 |
+
gradient_accumulation_steps=model_config.get("gradient_accumulation_steps", 8),
|
504 |
+
learning_rate=model_config.get("learning_rate", 5e-5),
|
505 |
+
weight_decay=model_config.get("weight_decay", 0.01),
|
506 |
+
warmup_ratio=model_config.get("warmup_ratio", 0.1),
|
507 |
+
lr_scheduler_type=model_config.get("lr_scheduler_type", "cosine"),
|
508 |
+
logging_steps=model_config.get("logging_steps", 10),
|
509 |
+
save_strategy=model_config.get("save_strategy", "steps"), # Updated to use steps by default
|
510 |
+
save_steps=model_config.get("save_steps", 100), # Save every 100 steps by default
|
511 |
+
save_total_limit=model_config.get("save_total_limit", 3), # Keep last 3 checkpoints
|
512 |
+
fp16=model_config.get("fp16", True),
|
513 |
+
bf16=model_config.get("bf16", False),
|
514 |
+
max_grad_norm=model_config.get("max_grad_norm", 1.0),
|
515 |
+
push_to_hub=model_config.get("push_to_hub", False),
|
516 |
+
hub_model_id=model_config.get("hub_model_id", None),
|
517 |
+
hub_token=os.environ.get("HF_TOKEN", None),
|
518 |
+
report_to="tensorboard",
|
519 |
+
remove_unused_columns=False, # Keep the conversations column
|
520 |
+
gradient_checkpointing=model_config.get("gradient_checkpointing", True), # Enable gradient checkpointing
|
521 |
+
dataloader_pin_memory=False, # Reduce memory usage
|
522 |
+
optim=model_config.get("optim", "adamw_torch"),
|
523 |
+
ddp_find_unused_parameters=False, # Improve distributed training efficiency
|
524 |
+
dataloader_drop_last=False, # Process all examples
|
525 |
+
dataloader_num_workers=0, # Sequential data loading
|
526 |
+
)
|
527 |
+
|
528 |
+
# Create a sequential sampler to ensure dataset is processed in order
|
529 |
+
logger.info("Creating sequential sampler to maintain dataset order")
|
530 |
+
|
531 |
+
# Create trainer with callback
|
532 |
+
logger.info("Creating trainer")
|
533 |
+
|
534 |
+
# Check if we should resume from checkpoint
|
535 |
+
resume_from_checkpoint = False
|
536 |
+
output_dir = model_config.get("output_dir", "./results")
|
537 |
+
if os.path.exists(output_dir):
|
538 |
+
checkpoints = [folder for folder in os.listdir(output_dir) if folder.startswith("checkpoint-")]
|
539 |
+
if checkpoints:
|
540 |
+
latest_checkpoint = max(checkpoints, key=lambda x: int(x.split("-")[1]))
|
541 |
+
resume_from_checkpoint = os.path.join(output_dir, latest_checkpoint)
|
542 |
+
logger.info(f"Found checkpoint: {resume_from_checkpoint}. Training will resume from this point.")
|
543 |
+
|
544 |
+
trainer = Trainer(
|
545 |
+
model=model,
|
546 |
+
args=training_args,
|
547 |
+
train_dataset=dataset,
|
548 |
+
data_collator=data_collator,
|
549 |
+
callbacks=[LoggingCallback()]
|
550 |
+
)
|
551 |
+
|
552 |
+
# Override the default data loader to disable shuffling
|
553 |
+
# This is necessary because TrainingArguments doesn't have a direct shuffle parameter
|
554 |
+
def get_train_dataloader_no_shuffle():
|
555 |
+
"""Create a train DataLoader with shuffling disabled."""
|
556 |
+
logger.info("Creating train dataloader with sequential sampler (no shuffling)")
|
557 |
+
|
558 |
+
# Create a sequential sampler to ensure dataset is processed in order
|
559 |
+
train_sampler = torch.utils.data.SequentialSampler(dataset)
|
560 |
+
|
561 |
+
return torch.utils.data.DataLoader(
|
562 |
+
dataset,
|
563 |
+
batch_size=training_args.per_device_train_batch_size,
|
564 |
+
sampler=train_sampler, # Use sequential sampler instead of shuffle parameter
|
565 |
+
collate_fn=data_collator,
|
566 |
+
drop_last=False,
|
567 |
+
num_workers=0,
|
568 |
+
pin_memory=False
|
569 |
+
)
|
570 |
+
|
571 |
+
# Replace the default data loader with our non-shuffling version
|
572 |
+
trainer.get_train_dataloader = get_train_dataloader_no_shuffle
|
573 |
+
|
574 |
+
# Start training
|
575 |
+
logger.info("Starting training")
|
576 |
+
logger.info(f"Processing with batch size = {training_args.per_device_train_batch_size}, each entry processed independently")
|
577 |
+
|
578 |
+
# Create a lock file to indicate training is in progress
|
579 |
+
lock_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "TRAINING_IN_PROGRESS.lock")
|
580 |
+
with open(lock_file, "w") as f:
|
581 |
+
f.write(f"Training started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
582 |
+
f.write(f"Expected completion: After {training_args.num_train_epochs} epochs\n")
|
583 |
+
f.write("DO NOT UPDATE OR RESTART THIS SPACE UNTIL TRAINING COMPLETES\n")
|
584 |
+
logger.info(f"Created lock file: {lock_file}")
|
585 |
+
|
586 |
+
try:
|
587 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
588 |
+
logger.info("Training completed successfully")
|
589 |
+
|
590 |
+
# Save model
|
591 |
+
if model_config.get("push_to_hub", False):
|
592 |
+
logger.info(f"Pushing model to hub: {model_config.get('hub_model_id')}")
|
593 |
+
trainer.push_to_hub()
|
594 |
+
logger.info("Model pushed to hub successfully")
|
595 |
+
else:
|
596 |
+
logger.info(f"Saving model to {model_config.get('output_dir', './results')}")
|
597 |
+
trainer.save_model()
|
598 |
+
logger.info("Model saved successfully")
|
599 |
+
except Exception as e:
|
600 |
+
logger.error(f"Training failed with error: {str(e)}")
|
601 |
+
raise
|
602 |
+
finally:
|
603 |
+
# Remove the lock file when training completes or fails
|
604 |
+
if os.path.exists(lock_file):
|
605 |
+
os.remove(lock_file)
|
606 |
+
logger.info(f"Removed lock file: {lock_file}")
|
607 |
+
|
608 |
+
return 0
|
609 |
+
|
610 |
+
except Exception as e:
|
611 |
+
logger.error(f"Error in main training loop: {str(e)}")
|
612 |
+
return 1
|
613 |
+
|
614 |
+
if __name__ == "__main__":
|
615 |
+
sys.exit(main())
|
transformers_config.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"name": "unsloth/phi-4-unsloth-bnb-4bit",
|
4 |
+
"trust_remote_code": true,
|
5 |
+
"use_fast_tokenizer": true
|
6 |
+
},
|
7 |
+
|
8 |
+
"tokenizer": {
|
9 |
+
"chat_template": "phi",
|
10 |
+
"max_seq_length": 2048,
|
11 |
+
"padding_side": "right",
|
12 |
+
"add_eos_token": true
|
13 |
+
},
|
14 |
+
|
15 |
+
"training": {
|
16 |
+
"per_device_train_batch_size": 16,
|
17 |
+
"gradient_accumulation_steps": 4,
|
18 |
+
"learning_rate": 2e-5,
|
19 |
+
"num_train_epochs": 3,
|
20 |
+
"max_steps": -1,
|
21 |
+
"logging_steps": 10,
|
22 |
+
"save_steps": 200,
|
23 |
+
"save_total_limit": 5,
|
24 |
+
"push_to_hub": true,
|
25 |
+
"hub_strategy": "every_save",
|
26 |
+
"gradient_checkpointing": true,
|
27 |
+
"optim": "adamw_torch",
|
28 |
+
"lr_scheduler_type": "cosine",
|
29 |
+
"warmup_ratio": 0.03,
|
30 |
+
"weight_decay": 0.01,
|
31 |
+
"max_grad_norm": 1.0,
|
32 |
+
"neftune_noise_alpha": 5
|
33 |
+
},
|
34 |
+
|
35 |
+
"checkpointing": {
|
36 |
+
"output_dir": "./results",
|
37 |
+
"save_strategy": "steps",
|
38 |
+
"save_steps": 100,
|
39 |
+
"save_total_limit": 3,
|
40 |
+
"hub_strategy": "every_save"
|
41 |
+
},
|
42 |
+
|
43 |
+
"unsloth": {
|
44 |
+
"enabled": true,
|
45 |
+
"r": 32,
|
46 |
+
"alpha": 16,
|
47 |
+
"dropout": 0.05,
|
48 |
+
"target_modules": [
|
49 |
+
"q_proj",
|
50 |
+
"k_proj",
|
51 |
+
"v_proj",
|
52 |
+
"o_proj",
|
53 |
+
"gate_proj",
|
54 |
+
"up_proj",
|
55 |
+
"down_proj"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
|
59 |
+
"logging": {
|
60 |
+
"logging_steps": 50,
|
61 |
+
"log_level": "info"
|
62 |
+
},
|
63 |
+
|
64 |
+
"huggingface_hub": {
|
65 |
+
"push_to_hub": true,
|
66 |
+
"hub_model_id": "phi-4-research-assistant",
|
67 |
+
"hub_private_repo": true
|
68 |
+
},
|
69 |
+
|
70 |
+
"model_name_or_path": "unsloth/phi-4-unsloth-bnb-4bit",
|
71 |
+
"model_revision": "main",
|
72 |
+
"use_flash_attention": true,
|
73 |
+
"torch_dtype": "bfloat16",
|
74 |
+
"bf16": true
|
75 |
+
}
|
update_space.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Quick script to update your Hugging Face Space for phi-4-unsloth-bnb-4bit training.
|
5 |
+
This script handles the specific requirements for the 4-bit quantized Phi-4 model training,
|
6 |
+
including proper configuration and dependency management.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
import json
|
12 |
+
import subprocess
|
13 |
+
import argparse
|
14 |
+
import logging
|
15 |
+
from pathlib import Path
|
16 |
+
from huggingface_hub import HfApi, login
|
17 |
+
import getpass
|
18 |
+
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
23 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
24 |
+
)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
def load_env_variables():
|
28 |
+
"""Load environment variables from system or .env file."""
|
29 |
+
# Check if we're running in a Hugging Face Space
|
30 |
+
if os.environ.get("SPACE_ID"):
|
31 |
+
logger.info("Running in Hugging Face Space")
|
32 |
+
if "/" in os.environ.get("SPACE_ID", ""):
|
33 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
34 |
+
os.environ["HF_USERNAME"] = username
|
35 |
+
logger.info(f"Set HF_USERNAME from SPACE_ID: {username}")
|
36 |
+
else:
|
37 |
+
try:
|
38 |
+
from dotenv import load_dotenv
|
39 |
+
env_path = Path(__file__).parent.parent / ".env"
|
40 |
+
if env_path.exists():
|
41 |
+
load_dotenv(env_path)
|
42 |
+
logger.info(f"Loaded environment variables from {env_path}")
|
43 |
+
else:
|
44 |
+
logger.warning(f"No .env file found at {env_path}")
|
45 |
+
except ImportError:
|
46 |
+
logger.warning("python-dotenv not installed, skipping .env loading")
|
47 |
+
|
48 |
+
# Verify required variables
|
49 |
+
required_vars = {
|
50 |
+
"HF_TOKEN": os.environ.get("HF_TOKEN"),
|
51 |
+
"HF_USERNAME": os.environ.get("HF_USERNAME"),
|
52 |
+
"HF_SPACE_NAME": os.environ.get("HF_SPACE_NAME", "phi4-cognitive-training")
|
53 |
+
}
|
54 |
+
|
55 |
+
missing_vars = [k for k, v in required_vars.items() if not v]
|
56 |
+
if missing_vars:
|
57 |
+
raise ValueError(f"Missing required environment variables: {', '.join(missing_vars)}")
|
58 |
+
|
59 |
+
return required_vars
|
60 |
+
|
61 |
+
def verify_configs():
|
62 |
+
"""Verify that all necessary configuration files exist and are valid."""
|
63 |
+
current_dir = Path(__file__).parent
|
64 |
+
required_files = [
|
65 |
+
"transformers_config.json",
|
66 |
+
"hardware_config.json",
|
67 |
+
"dataset_config.json",
|
68 |
+
"requirements.txt",
|
69 |
+
"run_transformers_training.py"
|
70 |
+
]
|
71 |
+
|
72 |
+
missing_files = []
|
73 |
+
for file in required_files:
|
74 |
+
if not (current_dir / file).exists():
|
75 |
+
missing_files.append(file)
|
76 |
+
|
77 |
+
if missing_files:
|
78 |
+
raise FileNotFoundError(f"Missing required files: {', '.join(missing_files)}")
|
79 |
+
|
80 |
+
# Verify JSON configs
|
81 |
+
json_files = [f for f in required_files if f.endswith('.json')]
|
82 |
+
for json_file in json_files:
|
83 |
+
try:
|
84 |
+
with open(current_dir / json_file) as f:
|
85 |
+
json.load(f)
|
86 |
+
logger.info(f"Verified {json_file} is valid JSON")
|
87 |
+
except json.JSONDecodeError as e:
|
88 |
+
raise ValueError(f"Invalid JSON in {json_file}: {e}")
|
89 |
+
|
90 |
+
def update_requirements():
|
91 |
+
"""Update requirements.txt with necessary packages."""
|
92 |
+
current_dir = Path(__file__).parent
|
93 |
+
req_path = current_dir / "requirements.txt"
|
94 |
+
|
95 |
+
required_packages = {
|
96 |
+
"torch>=2.0.0",
|
97 |
+
"transformers>=4.36.0",
|
98 |
+
"accelerate>=0.27.0",
|
99 |
+
"bitsandbytes>=0.41.0",
|
100 |
+
"tensorboard>=2.15.0",
|
101 |
+
"gradio>=5.17.0",
|
102 |
+
"huggingface-hub>=0.19.0",
|
103 |
+
"datasets>=2.15.0"
|
104 |
+
}
|
105 |
+
|
106 |
+
# Read existing requirements
|
107 |
+
existing_requirements = set()
|
108 |
+
if req_path.exists():
|
109 |
+
with open(req_path) as f:
|
110 |
+
existing_requirements = {line.strip() for line in f if line.strip()}
|
111 |
+
|
112 |
+
# Add new requirements
|
113 |
+
updated_requirements = existing_requirements.union(required_packages)
|
114 |
+
|
115 |
+
# Write updated requirements
|
116 |
+
with open(req_path, 'w') as f:
|
117 |
+
for req in sorted(updated_requirements):
|
118 |
+
f.write(f"{req}\n")
|
119 |
+
|
120 |
+
logger.info("Updated requirements.txt with necessary packages")
|
121 |
+
|
122 |
+
def create_space(username, space_name):
|
123 |
+
"""Create or get a Hugging Face Space."""
|
124 |
+
try:
|
125 |
+
api = HfApi()
|
126 |
+
space_id = f"{username}/{space_name}"
|
127 |
+
logger.info(f"Checking Space {space_id}...")
|
128 |
+
|
129 |
+
try:
|
130 |
+
space_info = api.space_info(repo_id=space_id)
|
131 |
+
logger.info(f"Space {space_id} exists")
|
132 |
+
return space_info
|
133 |
+
except Exception:
|
134 |
+
logger.info(f"Creating new Space {space_id}...")
|
135 |
+
|
136 |
+
space_info = api.create_repo(
|
137 |
+
repo_id=space_id,
|
138 |
+
repo_type="space",
|
139 |
+
space_sdk="gradio",
|
140 |
+
private=False
|
141 |
+
)
|
142 |
+
logger.info(f"Space {space_id} created successfully")
|
143 |
+
return space_info
|
144 |
+
except Exception as e:
|
145 |
+
raise RuntimeError(f"Error with Space {username}/{space_name}: {e}")
|
146 |
+
|
147 |
+
def main():
|
148 |
+
parser = argparse.ArgumentParser(description='Update Hugging Face Space for Phi-4 training')
|
149 |
+
parser.add_argument('--space_name', type=str, help='Space name (default: from env)')
|
150 |
+
parser.add_argument('--force', action='store_true', help='Skip confirmation')
|
151 |
+
args = parser.parse_args()
|
152 |
+
|
153 |
+
if not args.force:
|
154 |
+
print("\n" + "!"*80)
|
155 |
+
print("WARNING: Updating the Space will INTERRUPT any ongoing training!")
|
156 |
+
print("Make sure all checkpoints are saved before proceeding.")
|
157 |
+
print("!"*80 + "\n")
|
158 |
+
|
159 |
+
confirm = input("Type 'update' to confirm: ")
|
160 |
+
if confirm.lower() != 'update':
|
161 |
+
logger.info("Update cancelled")
|
162 |
+
return False
|
163 |
+
|
164 |
+
try:
|
165 |
+
# Load environment variables
|
166 |
+
env_vars = load_env_variables()
|
167 |
+
logger.info(f"Environment variables loaded: USERNAME={env_vars['HF_USERNAME']}, SPACE_NAME={env_vars['HF_SPACE_NAME']}")
|
168 |
+
|
169 |
+
# Verify configurations
|
170 |
+
verify_configs()
|
171 |
+
logger.info("All configuration files verified successfully")
|
172 |
+
|
173 |
+
# Update requirements
|
174 |
+
update_requirements()
|
175 |
+
logger.info("Requirements updated successfully")
|
176 |
+
|
177 |
+
# Get space name
|
178 |
+
space_name = args.space_name or env_vars["HF_SPACE_NAME"]
|
179 |
+
logger.info(f"Using space name: {space_name}")
|
180 |
+
|
181 |
+
# Login to Hugging Face
|
182 |
+
logger.info("Logging in to Hugging Face...")
|
183 |
+
login(token=env_vars["HF_TOKEN"])
|
184 |
+
logger.info("Successfully logged in to Hugging Face")
|
185 |
+
|
186 |
+
# Create/get space
|
187 |
+
space_info = create_space(env_vars["HF_USERNAME"], space_name)
|
188 |
+
logger.info(f"Space info: {space_info}")
|
189 |
+
|
190 |
+
# Upload files
|
191 |
+
current_dir = Path(__file__).parent
|
192 |
+
logger.info(f"Uploading files from {current_dir} to Space {env_vars['HF_USERNAME']}/{space_name}...")
|
193 |
+
|
194 |
+
# Create .gitignore
|
195 |
+
with open(current_dir / ".gitignore", "w") as f:
|
196 |
+
f.write(".env\n*.pyc\n__pycache__\n")
|
197 |
+
logger.info("Created .gitignore file")
|
198 |
+
|
199 |
+
api = HfApi()
|
200 |
+
api.upload_folder(
|
201 |
+
folder_path=str(current_dir),
|
202 |
+
repo_id=f"{env_vars['HF_USERNAME']}/{space_name}",
|
203 |
+
repo_type="space",
|
204 |
+
ignore_patterns=[".env", "*.pyc", "__pycache__", "TRAINING_IN_PROGRESS.lock"]
|
205 |
+
)
|
206 |
+
|
207 |
+
logger.info(f"Files uploaded successfully")
|
208 |
+
space_url = f"https://huggingface.co/spaces/{env_vars['HF_USERNAME']}/{space_name}"
|
209 |
+
logger.info(f"Space URL: {space_url}")
|
210 |
+
print(f"\nSpace created successfully! You can view it at:\n{space_url}")
|
211 |
+
return True
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"Error updating Space: {str(e)}")
|
215 |
+
return False
|
216 |
+
|
217 |
+
if __name__ == "__main__":
|
218 |
+
success = main()
|
219 |
+
sys.exit(0 if success else 1)
|