Spaces:
Configuration error
Configuration error
File size: 25,533 Bytes
025632f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from modules import tables
from google_tools import trends as gtrends
import pandas as pd
import numpy as np
from datetime import timedelta, date
from statsmodels.tsa.seasonal import seasonal_decompose
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import io
import boto3
import openpyxl
key ='AKIARYMZ4J2YQDB66VX4'
secret_key = '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'
bucket='portallvam'
path ='Momentum.xlsx'
def save_s3(key, secret_key, bucket, df, path):
with io.BytesIO() as output:
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
for industry in df.keys():
df[industry].to_excel(writer, sheet_name=industry)
data = output.getvalue()
s3 = boto3.resource('s3', aws_access_key_id=key, aws_secret_access_key=secret_key)
s3.Bucket(bucket).put_object(Key=path, Body=data)
def read_excel_s3(key, secret_key, bucket, path):
s3_client = boto3.client('s3', aws_access_key_id=key, aws_secret_access_key=secret_key)
response = s3_client.get_object(Bucket=bucket, Key=path)
data = response["Body"].read()
df = pd.read_excel(io.BytesIO(data), sheet_name=None, index_col='Unnamed: 0.1')
return df
def generar_excel(ruta_guardado, Pestanas, Data):
wb = openpyxl.Workbook()
writer = pd.ExcelWriter(ruta_guardado)
for pestana in Pestanas:
wb.create_sheet(pestana)
std = wb.get_sheet_by_name('Sheet')
wb.remove_sheet(std)
wb.save(ruta_guardado)
for i, pestana in enumerate(Pestanas):
if pestana=='Real Estate Management & Development-CL':
pestana = 'Real Estate-CL'
Data['Real Estate Management & Development-CL'].to_excel(writer, sheet_name=pestana)
elif pestana=='Real Estate Management & Development-BR':
pestana = 'Real Estate-BR'
Data['Real Estate Management & Development-BR'].to_excel(writer, sheet_name=pestana)
else:
Data[pestana].to_excel(writer, sheet_name=Pestanas[i])
writer.save()
def colores_corporativos(colors=None):
color_dict = {'red': (204, 0, 51),
'light_blue': (110, 162, 201),
'light_gray': (135, 146, 158),
'grey': (105, 105, 105),
'yellow': (195, 195, 9),
'dark_purple': (119, 28, 95),
'blue': (42, 83, 113),
'purple': (159, 37, 127),
'light_yellow': (252, 252, 196),
'light_green': (122, 178, 153),
'gray': (66, 74, 82)}
for key in color_dict:
color_dict[key] = tuple(v/255 for v in color_dict[key])
if colors is None:
return color_dict
else:
aux = {col: color_dict[col] for col in colors}
return aux
corp_colors = list(colores_corporativos().values())
colors2 = []
for i in range(len(corp_colors)):
colors2.append("rgb" + str(corp_colors[i]))
company_db = pd.read_excel('Data/Company_Base_Definitivo.xlsx', sheet_name='Compilado')
id_to_ticker = {str(row['ID_Quant']): str(row['Ticker Bloomberg']).split()[0] for i, row in company_db.iterrows()}
countries_dict = {'BR': 'Brazil', 'CL': 'Chile', 'US': 'Brazil',
'US-Disease': 'Brazil'}
@st.cache(suppress_st_warning=True)
def data_request(countries, start, currency='USD'):
close_price = {'Brazil': [],
'Chile': []}
market_cap = {'Brazil': [],
'Chile': []}
for c in countries:
close_price[c] = tables.EquityMaster(field='IQ_CLOSEPRICE_ADJ', currency=currency, country=c).query(
rename=['asset'], start=start, expand=True)
market_cap[c] = tables.EquityMaster(field='IQ_MARKETCAP', currency=currency, country=c).query(
start=start, rename=['asset'], expand=True)
close_price[c] = close_price[c].loc[:, close_price[c].columns.isin(id_to_ticker.keys())]
close_price[c].columns = [id_to_ticker[col] for col in close_price[c].columns]
market_cap[c] = market_cap[c].loc[:, market_cap[c].columns.isin(id_to_ticker.keys())]
market_cap[c].columns = [id_to_ticker[col] for col in market_cap[c].columns]
return [close_price, market_cap]
@st.cache(suppress_st_warning=True)
def trends_request(keywords, today):
trends_frames_dict = {}
for sector, values in keywords.items():
if not (sector in ['Restaurantes']):
trends_frames_dict[sector] = {}
print('Buscando para ' + sector)
for country_name in values.columns:
words = values[country_name].dropna()
if '-' in country_name:
fixed_country_name = country_name.split('-')[0].strip()
else:
fixed_country_name = country_name
words_index = pd.DataFrame()
for word in words:
new_data = gtrends.keyword_trend(word, fixed_country_name, end_date=today)
if new_data is not None:
words_index = pd.concat([words_index,
new_data],
axis=1)
else:
print('No se encuentra data para ' + word)
trends_frames_dict[sector][country_name] = words_index
trends_frames_dict[sector][country_name].index.name = None
return trends_frames_dict
def trends_frames_excel(dicc):
sheets_cl = []
sheets_br = []
for key_1 in dicc.keys():
for key_2 in dicc[key_1].keys():
if key_2=='CL':
sheets_cl .append(key_1 + '-' + key_2)
else:
sheets_br.append(key_1 + '-' + key_2)
trends_frames_dict_cl = {}
trends_frames_dict_br = {}
for key_1 in dicc.keys():
for key_2 in dicc[key_1].keys():
if key_2=='CL':
trends_frames_dict_cl[key_1 + '-'+ key_2] = dicc[key_1][key_2]
elif key_2=='BR':
trends_frames_dict_br[key_1 + '-' + key_2] = dicc[key_1][key_2]
elif key_2=='US' or key_2=='US-Disease':
trends_frames_dict_br[key_1 + '-' + key_2] = dicc[key_1][key_2]
generar_excel('Data/GT_CL.xlsx', sheets_cl, trends_frames_dict_cl)
df_cl = pd.read_excel('Data/GT_CL.xlsx', sheet_name=None)
st.write(df_cl)
save_s3(key=key, secret_key=secret_key, bucket=bucket, df=df_cl, path='GT_CL.xlsx')
generar_excel('Data/GT_BR.xlsx', sheets_br, trends_frames_dict_br)
df_br = pd.read_excel('Data/GT_BR.xlsx', sheet_name=None)
save_s3(key=key, secret_key=secret_key, bucket=bucket, df=df_br, path='GT_BR.xlsx')
def read_trends_frames(country):
if country=='CL':
return read_excel_s3(key=key, secret_key=secret_key, bucket=bucket, path='GT_CL.xlsx')
elif country=='BR':
return read_excel_s3(key=key, secret_key=secret_key, bucket=bucket, path='GT_BR.xlsx')
def report():
form = st.form('Report')
start_date = str(date.today() - timedelta(5 * 365))
select_countries = form.multiselect('驴Qu茅 pa铆s(es) desea visualizar?', ['Todos', 'Chile', 'Brazil'])
if 'Todos' in select_countries:
select_countries = ['Chile', 'Brazil']
update_data = form.form_submit_button("Actualizar Datos")
accept = form.form_submit_button('Visualizar')
col1, col2 = st.columns(2)
if update_data:
xls = pd.ExcelFile('Data/keywords_definitivas_mongo.xlsx')
industry_filter = ['Pesca', 'Agricola', 'Financials-RP']
keywords_dict = {sheet: xls.parse(sheet) for sheet in xls.sheet_names
if sheet not in industry_filter}
xls.close()
del xls
# Arreglamos una llave porque una hoja de excel alcanza el m谩ximo de caracteres posible para un nombre.
new_key = "Real Estate Management & Development"
old_key = "Real Estate Management & Develo"
keywords_dict[new_key] = keywords_dict.pop(old_key)
trends_dict = trends_request(keywords_dict, date.today())
trends_frames_excel(trends_dict)
ud = pd.read_excel('Data/update_data.xlsx')
ud = ud[ud['View'] != 'Google Trends']
today = date.today().strftime('%d-%m-%Y')
ud = ud.append({"View": 'Google Trends',
"Last_Update": today}, ignore_index=True)
ud.to_excel('Data/update_data.xlsx', index=False)
if accept:
close_price_dict, market_cap_dict = data_request(select_countries, start_date)
ew_index = {}
mw_index = {}
country_index = {}
if select_countries == ['Brazil']:
dates = {'Brazil': sorted(list(set(market_cap_dict['Brazil'].index)
.union(set(close_price_dict['Brazil'].index))))}
elif select_countries == ['Chile']:
dates = {'Chile': sorted(list(set(market_cap_dict['Chile'].index)
.union(set(close_price_dict['Chile'].index))))}
else:
dates = {'Brazil': sorted(list(set(market_cap_dict['Brazil'].index)
.union(set(close_price_dict['Brazil'].index)))),
'Chile': sorted(list(set(market_cap_dict['Chile'].index)
.union(set(close_price_dict['Chile'].index))))}
for country in select_countries:
mkt = market_cap_dict[country]
cp = close_price_dict[country]
w = mkt.div(mkt.sum(1).values, axis=0)
rets = cp.pct_change()
country_index[country] = pd.DataFrame({'MW': (w * rets).sum(1),
'EW': rets.mean(1)}).fillna(0)
industries_1 = np.unique(company_db[['LV1']].values)
industries_2 = np.unique(company_db[['LV2']].values)
industries = np.unique(np.concatenate([industries_1, industries_2]))
df_mw_index = pd.DataFrame(columns=industries, index=dates[country])
df_ew_index = pd.DataFrame(columns=industries, index=dates[country])
for industry in industries:
industry = str(industry)
mc = mkt.loc[:, mkt.columns.isin(company_db[company_db['LV1'] == industry]['Ticker'])]
prices = cp.loc[:, cp.columns.isin(company_db[company_db['LV1'] == industry]['Ticker'])]
w = mc.div(mc.sum(1).values, axis=0)
rets = prices.pct_change()
df_mw_index[industry] = (w * rets).sum(1)
df_ew_index[industry] = rets.mean(1)
mw_index[country] = df_mw_index.fillna(0)
ew_index[country] = df_ew_index.fillna(0)
xls = pd.ExcelFile('Data/keywords_definitivas_mongo.xlsx')
industry_filter = ['Pesca', 'Agricola', 'Financials-RP', 'Agriculture']
keywords_dict = {sheet: xls.parse(sheet) for sheet in xls.sheet_names
if sheet not in industry_filter}
xls.close()
del xls
new_key = "Real Estate Management & Development"
old_key = "Real Estate Management & Develo"
keywords_dict[new_key] = keywords_dict.pop(old_key)
trends_frames = {}
trends_frames_cl = read_trends_frames('CL')
trends_frames_br = read_trends_frames('BR')
for key_cl in trends_frames_cl.keys():
trends_frames_cl[key_cl] = trends_frames_cl[key_cl].drop(columns='Unnamed: 0')
for key_br in trends_frames_br.keys():
trends_frames_br[key_br] = trends_frames_br[key_br].drop(columns='Unnamed: 0')
for industry in keywords_dict.keys():
if not industry=='Restaurantes':
countries_in_industry = keywords_dict[industry].columns
trends_frames[industry] = {}
for c in countries_in_industry:
if c=='CL':
if industry == 'Real Estate Management & Development':
index = trends_frames_cl['Real Estate-CL'].index
trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_cl['Real Estate-CL'].columns,
index=index)
else:
index = trends_frames_cl[industry+'-CL'].index
trends_frames_cl[industry+'-CL'] = trends_frames_cl[industry+'-CL'].loc[:, trends_frames_cl[industry+'-CL'].columns.notnull()]
trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_cl[industry+'-CL'].columns,
index=index)
elif c=='BR':
if industry == 'Real Estate Management & Development':
index = trends_frames_br['Real Estate-BR'].index
trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_br['Real Estate-BR'].columns,
index=index)
else:
index = trends_frames_br[industry + '-BR'].index
trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_br[industry+'-BR'].columns,
index=index)
if 'CL' in countries_in_industry:
if industry == 'Real Estate Management & Development':
for col_cl in trends_frames_cl['Real Estate-CL'].columns:
if col_cl in keywords_dict[industry]['CL'].values:
trends_frames[industry]['CL'][col_cl] = trends_frames_cl['Real Estate-CL'][col_cl].dropna()
else:
for col_cl in trends_frames_cl[industry+'-CL'].columns:
if col_cl in keywords_dict[industry]['CL'].values:
trends_frames[industry]['CL'][col_cl] = trends_frames_cl[industry+'-CL'][col_cl].dropna()
if 'BR' in countries_in_industry:
if industry == 'Real Estate Management & Development':
for col_br in trends_frames_br['Real Estate-BR'].columns:
if col_br in keywords_dict[industry]['BR'].values:
trends_frames[industry]['BR'][col_br] = trends_frames_br['Real Estate-BR'][col_br].dropna()
else:
for col_br in trends_frames_br[industry+'-BR'].columns:
if col_br in keywords_dict[industry]['BR'].values:
trends_frames[industry]['BR'][col_br] = trends_frames_br[industry+'-BR'][col_br].dropna()
deseason = True
n_words = 5
for industry in keywords_dict.keys():
if not industry == 'Restaurantes':
countries_in_industry = keywords_dict[industry].columns
for c in countries_in_industry:
trends_frames[industry][c] = trends_frames[industry][c].loc[:, trends_frames[industry][c].columns.notnull()]
summary = pd.DataFrame()
fig1 = make_subplots(rows=2, cols=1,
subplot_titles=['Cambio Semanal', 'Cambio 1 Mes', 'Cambio 3 Meses', 'Cambio YTD'],
horizontal_spacing=0.6, )
fig2 = make_subplots(rows=2, cols=1,
subplot_titles=['Cambio Semanal', 'Cambio 1 Mes', 'Cambio 3 Meses', 'Cambio YTD'],
horizontal_spacing=0.6)
for industry, dict_ in trends_frames.items():
for country, df_ in dict_.items():
if deseason:
df_ = pd.DataFrame({col: df_[col] -
seasonal_decompose(df_[col], period=8).seasonal
for col in df_.columns})
summary[f'{industry}-{country}'] = df_.mean(1)
summary = (summary - summary.mean()) / summary.std()
delta_w = summary.diff(1).iloc[-1].sort_values(ascending=True)
delta_m = summary.diff(4).iloc[-1].sort_values(ascending=True)
delta_3m = summary.diff(12).iloc[-1].sort_values(ascending=True)
delta_ytd = summary.resample('Y').last().diff().iloc[-1].sort_values(ascending=True)
fig1.add_trace(go.Bar(x=delta_w.array, y=delta_w.index, orientation='h', marker_color=colors2[2],
showlegend=False), row=1, col=1)
fig2.add_trace(go.Bar(x=delta_m.array, y=delta_m.index, orientation='h', marker_color=colors2[2],
showlegend=False), row=1, col=1)
fig1.add_trace(go.Bar(x=delta_3m.array, y=delta_3m.index, orientation='h', marker_color=colors2[2],
showlegend=False), row=2, col=1)
fig2.add_trace(go.Bar(x=delta_ytd.array, y=delta_ytd.index, orientation='h', marker_color=colors2[2],
showlegend=False), row=2, col=1)
fig1.update_layout(title_text='Cambios en las B煤squedas', margin_b=0, margin_t=50, margin_r=0, margin_l=0)
fig2.update_layout(margin_b=0, margin_t=50, margin_r=0, margin_l=0)
col1.plotly_chart(fig1, use_container_width=True)
col2.plotly_chart(fig2, use_container_width=True)
for industry in trends_frames:
for i, (country, data) in enumerate(trends_frames[industry].items()):
if countries_dict[country] in select_countries:
fig_indices1 = make_subplots(rows=2, cols=1, specs=[[{"secondary_y": True}],
[{"secondary_y": False}]],
subplot_titles=['GT (zscore) vs Spread Hist贸rico',
'Variaci贸n YoY GT Hist贸rico'],
horizontal_spacing=0.)
fig_indices2 = make_subplots(rows=2, cols=1, specs=[[{"secondary_y": True}],
[{"secondary_y": False}]],
subplot_titles=['GT (zscore) vs Spread 脷ltimo A帽o',
'Variaci贸n YoY GT 脷ltimo a帽o'],
horizontal_spacing=0.3)
aux_df = summary[f'{industry}-{country}']
aux_df.index.name = ''
mm_year = aux_df.rolling(52).mean()
mm_half = aux_df.rolling(26).mean()
mm_quarter = aux_df.rolling(13).mean()
mm_month = aux_df.rolling(4).mean()
mm = pd.concat([mm_year, mm_half, mm_quarter, mm_month], axis=1)
mm.columns = ['1Y', '6M', '3M', '1M']
if deseason:
p = '3M'
else:
p = '1Y'
fig_indices1.add_trace(go.Scatter(x=mm[p].index, y=mm[p].array, line=dict(color=colors2[0]),
showlegend=True, name=f'{p} MM GT Index'),
secondary_y=False, row=1, col=1)
fig_indices1.update_layout(title_text=f'{industry} - {country}')
fig_indices2.add_trace(
go.Scatter(x=mm[p].iloc[-52:].index, y=mm[p].iloc[-52:].array, line=dict(color=colors2[0]),
showlegend=False, name=f'{p} MM GT Index'),
secondary_y=False, row=1, col=1)
mm_4w = data.mean(1).rolling(4).mean()
yoy = mm_4w.pct_change(52)
aux2 = pd.concat([yoy], axis=1)
aux2.columns = ['YoY']
aux2.index.name = ''
fig_indices1.add_trace(go.Bar(x=aux2.dropna().index, y=aux2.dropna()['YoY'],
marker_color=colors2[1], showlegend=False), row=2, col=1)
fig_indices2.add_trace(go.Bar(x=aux2.dropna().iloc[-52:].index, y=aux2.dropna()['YoY'].iloc[-52:].array,
marker_color=colors2[1], showlegend=False), row=2, col=1)
if country == 'US' and industry == 'Pesca':
country_ = 'Chile'
else:
country_ = countries_dict[country]
spread_mw = (mw_index[country_][industry].rolling(52).apply(lambda x: (1 + x).prod()) -
country_index[country_]['MW'].rolling(52).apply(lambda x: (1 + x).prod()))
spread_ew = (ew_index[country_][industry].rolling(52).apply(lambda x: (1 + x).prod()) -
country_index[country_]['EW'].rolling(52).apply(lambda x: (1 + x).prod()))
spread = pd.DataFrame({'EW': spread_ew, 'MW': spread_mw})
fig_indices1.add_trace(go.Scatter(x=spread['MW'].dropna().index, y=spread['MW'].dropna().array,
name='Spread MW', line=dict(color=colors2[3])),
secondary_y=True, row=1, col=1)
fig_indices2.add_trace(
go.Scatter(x=spread['MW'].iloc[-260:].dropna().index, y=spread['MW'].iloc[-260:].dropna().array,
name='Spread MW', line=dict(color=colors2[3])),
secondary_y=True, row=1, col=1)
fig_indices1.update_xaxes(showticklabels=False)
fig_indices2.update_xaxes(showticklabels=False)
fig_indices1.layout.update(xaxis_rangeslider_visible=False, margin_b=20,
margin_r=20, margin_l=20,
legend=dict(orientation="h",
yanchor="top",
y=0.6,
xanchor="right",
x=1))
fig_indices2.layout.update(xaxis_rangeslider_visible=False,
margin_b=20,
margin_r=20, margin_l=20,
legend=dict(orientation="h",
yanchor="top",
y=0.6,
xanchor="right",
x=1))
fig_indices1.update_xaxes(showticklabels=True, row=2,
col=1)
fig_indices2.update_xaxes(showticklabels=True, row=2,
col=1)
fig_indices1.update_yaxes(tickformat=',.0%', row=2, col=1)
fig_indices2.update_yaxes(tickformat=',.0%', row=2, col=1)
if deseason:
df1 = pd.DataFrame({col: data[col] -
seasonal_decompose(data[col]).seasonal
for col in data.columns})
else:
df1 = data
# Top word's table plot
last_week = df1.iloc[-1].sort_values(ascending=False)[:n_words] / 100
all_time = df1.mean().sort_values(ascending=False)[:n_words] / 100
fig_W = make_subplots(subplot_titles=['Top Words en ' + f'{industry} - {country}'])
table = pd.concat([pd.Series(last_week.index),
pd.Series(all_time.index)], axis=1)
table.columns = ['Top 1W', 'Top 5Y']
fig_W.add_trace(go.Table(header=dict(values=table.columns),
cells=dict(values=[table['Top 1W'].values, table['Top 5Y'].values])))
fig_W.update_layout(margin_b=0, margin_t=50,
margin_r=0, margin_l=0,
height=200)
fig_indices1.update_layout(margin_b=0, margin_t=50,
margin_r=0, margin_l=0,
height=600)
fig_indices2.update_layout(margin_b=0, margin_t=50,
margin_r=0, margin_l=0,
height=600)
col1.plotly_chart(fig_indices1, use_container_width=True)
col2.plotly_chart(fig_indices2, use_container_width=True)
fig_W.update_layout(margin_b=0, margin_t=30, margin_r=10, margin_l=0)
st.plotly_chart(fig_W, use_container_width=True)
|