File size: 25,533 Bytes
025632f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from modules import tables
from google_tools import trends as gtrends
import pandas as pd
import numpy as np
from datetime import timedelta, date
from statsmodels.tsa.seasonal import seasonal_decompose
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import io
import boto3
import openpyxl


key ='AKIARYMZ4J2YQDB66VX4'
secret_key = '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'
bucket='portallvam'
path ='Momentum.xlsx'


def save_s3(key, secret_key, bucket, df, path):
    with io.BytesIO() as output:
        with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
            for industry in df.keys():
                df[industry].to_excel(writer, sheet_name=industry)
        data = output.getvalue()
    s3 = boto3.resource('s3', aws_access_key_id=key, aws_secret_access_key=secret_key)
    s3.Bucket(bucket).put_object(Key=path, Body=data)


def read_excel_s3(key, secret_key, bucket, path):
    s3_client = boto3.client('s3', aws_access_key_id=key, aws_secret_access_key=secret_key)
    response = s3_client.get_object(Bucket=bucket, Key=path)
    data = response["Body"].read()
    df = pd.read_excel(io.BytesIO(data), sheet_name=None, index_col='Unnamed: 0.1')
    return df


def generar_excel(ruta_guardado, Pestanas, Data):
    wb = openpyxl.Workbook()
    writer = pd.ExcelWriter(ruta_guardado)
    for pestana in Pestanas:
        wb.create_sheet(pestana)
    std = wb.get_sheet_by_name('Sheet')
    wb.remove_sheet(std)
    wb.save(ruta_guardado)
    for i, pestana in enumerate(Pestanas):
        if pestana=='Real Estate Management & Development-CL':
            pestana = 'Real Estate-CL'
            Data['Real Estate Management & Development-CL'].to_excel(writer, sheet_name=pestana)
        elif pestana=='Real Estate Management & Development-BR':
            pestana = 'Real Estate-BR'
            Data['Real Estate Management & Development-BR'].to_excel(writer, sheet_name=pestana)
        else:
            Data[pestana].to_excel(writer, sheet_name=Pestanas[i])
    writer.save()


def colores_corporativos(colors=None):

    color_dict = {'red': (204, 0, 51),
                   'light_blue': (110, 162, 201),
                   'light_gray': (135, 146, 158),
                   'grey': (105, 105, 105),
                   'yellow': (195, 195, 9),
                   'dark_purple': (119, 28, 95),
                   'blue': (42, 83, 113),
                   'purple': (159, 37, 127),
                   'light_yellow': (252, 252, 196),
                   'light_green': (122, 178, 153),
                   'gray': (66, 74, 82)}

    for key in color_dict:
        color_dict[key] = tuple(v/255 for v in color_dict[key])

    if colors is None:
        return color_dict
    else:
        aux = {col: color_dict[col] for col in colors}
        return aux


corp_colors = list(colores_corporativos().values())
colors2 = []
for i in range(len(corp_colors)):
    colors2.append("rgb" + str(corp_colors[i]))


company_db = pd.read_excel('Data/Company_Base_Definitivo.xlsx', sheet_name='Compilado')
id_to_ticker = {str(row['ID_Quant']): str(row['Ticker Bloomberg']).split()[0] for i, row in company_db.iterrows()}

countries_dict = {'BR': 'Brazil', 'CL': 'Chile', 'US': 'Brazil',
                  'US-Disease': 'Brazil'}


@st.cache(suppress_st_warning=True)
def data_request(countries, start, currency='USD'):
    close_price = {'Brazil': [],
                   'Chile': []}
    market_cap = {'Brazil': [],
                  'Chile': []}
    for c in countries:
        close_price[c] = tables.EquityMaster(field='IQ_CLOSEPRICE_ADJ', currency=currency, country=c).query(
            rename=['asset'], start=start, expand=True)
        market_cap[c] = tables.EquityMaster(field='IQ_MARKETCAP', currency=currency, country=c).query(
            start=start, rename=['asset'], expand=True)

        close_price[c] = close_price[c].loc[:, close_price[c].columns.isin(id_to_ticker.keys())]
        close_price[c].columns = [id_to_ticker[col] for col in close_price[c].columns]

        market_cap[c] = market_cap[c].loc[:, market_cap[c].columns.isin(id_to_ticker.keys())]
        market_cap[c].columns = [id_to_ticker[col] for col in market_cap[c].columns]
    return [close_price, market_cap]


@st.cache(suppress_st_warning=True)
def trends_request(keywords, today):
    trends_frames_dict = {}
    for sector, values in keywords.items():
        if not (sector in ['Restaurantes']):
            trends_frames_dict[sector] = {}
            print('Buscando para ' + sector)
            for country_name in values.columns:
                words = values[country_name].dropna()
                if '-' in country_name:
                    fixed_country_name = country_name.split('-')[0].strip()
                else:
                    fixed_country_name = country_name
                words_index = pd.DataFrame()
                for word in words:
                    new_data = gtrends.keyword_trend(word, fixed_country_name, end_date=today)
                    if new_data is not None:
                        words_index = pd.concat([words_index,
                                                 new_data],
                                                axis=1)
                    else:
                        print('No se encuentra data para ' + word)
                trends_frames_dict[sector][country_name] = words_index
                trends_frames_dict[sector][country_name].index.name = None
    return trends_frames_dict


def trends_frames_excel(dicc):
    sheets_cl = []
    sheets_br = []
    for key_1 in dicc.keys():
        for key_2 in dicc[key_1].keys():
            if key_2=='CL':
                sheets_cl .append(key_1 + '-' + key_2)
            else:
                sheets_br.append(key_1 + '-' + key_2)
    trends_frames_dict_cl = {}
    trends_frames_dict_br = {}
    for key_1 in dicc.keys():
        for key_2 in dicc[key_1].keys():
            if key_2=='CL':
                trends_frames_dict_cl[key_1 + '-'+ key_2] = dicc[key_1][key_2]
            elif key_2=='BR':
                trends_frames_dict_br[key_1 + '-' + key_2] = dicc[key_1][key_2]
            elif key_2=='US' or key_2=='US-Disease':
                trends_frames_dict_br[key_1 + '-' + key_2] = dicc[key_1][key_2]

    generar_excel('Data/GT_CL.xlsx', sheets_cl, trends_frames_dict_cl)
    df_cl = pd.read_excel('Data/GT_CL.xlsx', sheet_name=None)
    st.write(df_cl)
    save_s3(key=key, secret_key=secret_key, bucket=bucket, df=df_cl, path='GT_CL.xlsx')

    generar_excel('Data/GT_BR.xlsx', sheets_br, trends_frames_dict_br)
    df_br = pd.read_excel('Data/GT_BR.xlsx', sheet_name=None)
    save_s3(key=key, secret_key=secret_key, bucket=bucket, df=df_br, path='GT_BR.xlsx')


def read_trends_frames(country):
    if country=='CL':
        return read_excel_s3(key=key, secret_key=secret_key, bucket=bucket, path='GT_CL.xlsx')
    elif country=='BR':
        return read_excel_s3(key=key, secret_key=secret_key, bucket=bucket, path='GT_BR.xlsx')


def report():
    form = st.form('Report')
    start_date = str(date.today() - timedelta(5 * 365))
    select_countries = form.multiselect('驴Qu茅 pa铆s(es) desea visualizar?', ['Todos', 'Chile', 'Brazil'])
    if 'Todos' in select_countries:
        select_countries = ['Chile', 'Brazil']
    update_data = form.form_submit_button("Actualizar Datos")
    accept = form.form_submit_button('Visualizar')
    col1, col2 = st.columns(2)

    if update_data:
        xls = pd.ExcelFile('Data/keywords_definitivas_mongo.xlsx')
        industry_filter = ['Pesca', 'Agricola', 'Financials-RP']
        keywords_dict = {sheet: xls.parse(sheet) for sheet in xls.sheet_names
                         if sheet not in industry_filter}
        xls.close()
        del xls

        # Arreglamos una llave porque una hoja de excel alcanza el m谩ximo de caracteres posible para un nombre.
        new_key = "Real Estate Management & Development"
        old_key = "Real Estate Management & Develo"
        keywords_dict[new_key] = keywords_dict.pop(old_key)

        trends_dict = trends_request(keywords_dict, date.today())
        trends_frames_excel(trends_dict)
        ud = pd.read_excel('Data/update_data.xlsx')
        ud = ud[ud['View'] != 'Google Trends']
        today = date.today().strftime('%d-%m-%Y')
        ud = ud.append({"View": 'Google Trends',
                    "Last_Update": today}, ignore_index=True)
        ud.to_excel('Data/update_data.xlsx', index=False)

    if accept:
        close_price_dict, market_cap_dict = data_request(select_countries, start_date)

        ew_index = {}
        mw_index = {}
        country_index = {}

        if select_countries == ['Brazil']:
            dates = {'Brazil': sorted(list(set(market_cap_dict['Brazil'].index)
                                           .union(set(close_price_dict['Brazil'].index))))}
        elif select_countries == ['Chile']:
            dates = {'Chile': sorted(list(set(market_cap_dict['Chile'].index)
                                          .union(set(close_price_dict['Chile'].index))))}
        else:
            dates = {'Brazil': sorted(list(set(market_cap_dict['Brazil'].index)
                                           .union(set(close_price_dict['Brazil'].index)))),
                     'Chile': sorted(list(set(market_cap_dict['Chile'].index)
                                          .union(set(close_price_dict['Chile'].index))))}

        for country in select_countries:
            mkt = market_cap_dict[country]
            cp = close_price_dict[country]
            w = mkt.div(mkt.sum(1).values, axis=0)
            rets = cp.pct_change()
            country_index[country] = pd.DataFrame({'MW': (w * rets).sum(1),
                                                   'EW': rets.mean(1)}).fillna(0)
            industries_1 = np.unique(company_db[['LV1']].values)
            industries_2 = np.unique(company_db[['LV2']].values)
            industries = np.unique(np.concatenate([industries_1, industries_2]))
            df_mw_index = pd.DataFrame(columns=industries, index=dates[country])
            df_ew_index = pd.DataFrame(columns=industries, index=dates[country])
            for industry in industries:
                industry = str(industry)
                mc = mkt.loc[:, mkt.columns.isin(company_db[company_db['LV1'] == industry]['Ticker'])]
                prices = cp.loc[:, cp.columns.isin(company_db[company_db['LV1'] == industry]['Ticker'])]

                w = mc.div(mc.sum(1).values, axis=0)
                rets = prices.pct_change()
                df_mw_index[industry] = (w * rets).sum(1)
                df_ew_index[industry] = rets.mean(1)
            mw_index[country] = df_mw_index.fillna(0)
            ew_index[country] = df_ew_index.fillna(0)

        xls = pd.ExcelFile('Data/keywords_definitivas_mongo.xlsx')
        industry_filter = ['Pesca', 'Agricola', 'Financials-RP', 'Agriculture']
        keywords_dict = {sheet: xls.parse(sheet) for sheet in xls.sheet_names
                         if sheet not in industry_filter}
        xls.close()
        del xls

        new_key = "Real Estate Management & Development"
        old_key = "Real Estate Management & Develo"
        keywords_dict[new_key] = keywords_dict.pop(old_key)

        trends_frames = {}
        trends_frames_cl = read_trends_frames('CL')
        trends_frames_br = read_trends_frames('BR')

        for key_cl in trends_frames_cl.keys():
            trends_frames_cl[key_cl] = trends_frames_cl[key_cl].drop(columns='Unnamed: 0')

        for key_br in trends_frames_br.keys():
            trends_frames_br[key_br] = trends_frames_br[key_br].drop(columns='Unnamed: 0')

        for industry in keywords_dict.keys():
            if not industry=='Restaurantes':
                countries_in_industry = keywords_dict[industry].columns
                trends_frames[industry] = {}
                for c in countries_in_industry:
                    if c=='CL':
                        if industry == 'Real Estate Management & Development':
                            index = trends_frames_cl['Real Estate-CL'].index
                            trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_cl['Real Estate-CL'].columns,
                                                                      index=index)
                        else:
                            index = trends_frames_cl[industry+'-CL'].index
                            trends_frames_cl[industry+'-CL'] = trends_frames_cl[industry+'-CL'].loc[:, trends_frames_cl[industry+'-CL'].columns.notnull()]
                            trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_cl[industry+'-CL'].columns,
                                                                      index=index)
                    elif c=='BR':
                        if industry == 'Real Estate Management & Development':
                            index = trends_frames_br['Real Estate-BR'].index
                            trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_br['Real Estate-BR'].columns,
                                                                      index=index)
                        else:
                            index = trends_frames_br[industry + '-BR'].index
                            trends_frames[industry][c] = pd.DataFrame(columns=trends_frames_br[industry+'-BR'].columns,
                                                                      index=index)
                if 'CL' in countries_in_industry:
                    if industry == 'Real Estate Management & Development':
                        for col_cl in trends_frames_cl['Real Estate-CL'].columns:
                            if col_cl in keywords_dict[industry]['CL'].values:
                                trends_frames[industry]['CL'][col_cl] = trends_frames_cl['Real Estate-CL'][col_cl].dropna()
                    else:
                        for col_cl in trends_frames_cl[industry+'-CL'].columns:
                            if col_cl in keywords_dict[industry]['CL'].values:
                                trends_frames[industry]['CL'][col_cl] = trends_frames_cl[industry+'-CL'][col_cl].dropna()
                if 'BR' in countries_in_industry:
                    if industry == 'Real Estate Management & Development':
                        for col_br in trends_frames_br['Real Estate-BR'].columns:
                            if col_br in keywords_dict[industry]['BR'].values:
                                trends_frames[industry]['BR'][col_br] = trends_frames_br['Real Estate-BR'][col_br].dropna()
                    else:
                        for col_br in trends_frames_br[industry+'-BR'].columns:
                            if col_br in keywords_dict[industry]['BR'].values:
                                trends_frames[industry]['BR'][col_br] = trends_frames_br[industry+'-BR'][col_br].dropna()
        deseason = True
        n_words = 5
        for industry in keywords_dict.keys():
            if not industry == 'Restaurantes':
                countries_in_industry = keywords_dict[industry].columns
                for c in countries_in_industry:
                    trends_frames[industry][c] = trends_frames[industry][c].loc[:, trends_frames[industry][c].columns.notnull()]

        summary = pd.DataFrame()
        fig1 = make_subplots(rows=2, cols=1,
                             subplot_titles=['Cambio Semanal', 'Cambio 1 Mes', 'Cambio 3 Meses', 'Cambio YTD'],
                             horizontal_spacing=0.6, )
        fig2 = make_subplots(rows=2, cols=1,
                             subplot_titles=['Cambio Semanal', 'Cambio 1 Mes', 'Cambio 3 Meses', 'Cambio YTD'],
                             horizontal_spacing=0.6)
        for industry, dict_ in trends_frames.items():
            for country, df_ in dict_.items():
                if deseason:
                    df_ = pd.DataFrame({col: df_[col] -
                                             seasonal_decompose(df_[col], period=8).seasonal
                                        for col in df_.columns})
                summary[f'{industry}-{country}'] = df_.mean(1)
        summary = (summary - summary.mean()) / summary.std()

        delta_w = summary.diff(1).iloc[-1].sort_values(ascending=True)
        delta_m = summary.diff(4).iloc[-1].sort_values(ascending=True)
        delta_3m = summary.diff(12).iloc[-1].sort_values(ascending=True)
        delta_ytd = summary.resample('Y').last().diff().iloc[-1].sort_values(ascending=True)

        fig1.add_trace(go.Bar(x=delta_w.array, y=delta_w.index, orientation='h', marker_color=colors2[2],
                              showlegend=False), row=1, col=1)

        fig2.add_trace(go.Bar(x=delta_m.array, y=delta_m.index, orientation='h', marker_color=colors2[2],
                              showlegend=False), row=1, col=1)

        fig1.add_trace(go.Bar(x=delta_3m.array, y=delta_3m.index, orientation='h', marker_color=colors2[2],
                              showlegend=False), row=2, col=1)

        fig2.add_trace(go.Bar(x=delta_ytd.array, y=delta_ytd.index, orientation='h', marker_color=colors2[2],
                              showlegend=False), row=2, col=1)

        fig1.update_layout(title_text='Cambios en las B煤squedas', margin_b=0, margin_t=50, margin_r=0, margin_l=0)
        fig2.update_layout(margin_b=0, margin_t=50, margin_r=0, margin_l=0)
        col1.plotly_chart(fig1, use_container_width=True)
        col2.plotly_chart(fig2, use_container_width=True)

        for industry in trends_frames:
            for i, (country, data) in enumerate(trends_frames[industry].items()):
                if countries_dict[country] in select_countries:

                    fig_indices1 = make_subplots(rows=2, cols=1, specs=[[{"secondary_y": True}],
                                                                        [{"secondary_y": False}]],
                                                 subplot_titles=['GT (zscore) vs Spread Hist贸rico',
                                                                 'Variaci贸n YoY GT Hist贸rico'],
                                                 horizontal_spacing=0.)
                    fig_indices2 = make_subplots(rows=2, cols=1, specs=[[{"secondary_y": True}],
                                                                        [{"secondary_y": False}]],
                                                 subplot_titles=['GT (zscore) vs Spread 脷ltimo A帽o',
                                                                 'Variaci贸n YoY GT 脷ltimo a帽o'],
                                                 horizontal_spacing=0.3)

                    aux_df = summary[f'{industry}-{country}']
                    aux_df.index.name = ''
                    mm_year = aux_df.rolling(52).mean()
                    mm_half = aux_df.rolling(26).mean()
                    mm_quarter = aux_df.rolling(13).mean()
                    mm_month = aux_df.rolling(4).mean()
                    mm = pd.concat([mm_year, mm_half, mm_quarter, mm_month], axis=1)
                    mm.columns = ['1Y', '6M', '3M', '1M']
                    if deseason:
                        p = '3M'
                    else:
                        p = '1Y'

                    fig_indices1.add_trace(go.Scatter(x=mm[p].index, y=mm[p].array, line=dict(color=colors2[0]),
                                                      showlegend=True, name=f'{p} MM GT Index'),
                                           secondary_y=False, row=1, col=1)

                    fig_indices1.update_layout(title_text=f'{industry} - {country}')
                    fig_indices2.add_trace(
                        go.Scatter(x=mm[p].iloc[-52:].index, y=mm[p].iloc[-52:].array, line=dict(color=colors2[0]),
                                   showlegend=False, name=f'{p} MM GT Index'),
                        secondary_y=False, row=1, col=1)

                    mm_4w = data.mean(1).rolling(4).mean()
                    yoy = mm_4w.pct_change(52)
                    aux2 = pd.concat([yoy], axis=1)
                    aux2.columns = ['YoY']
                    aux2.index.name = ''

                    fig_indices1.add_trace(go.Bar(x=aux2.dropna().index, y=aux2.dropna()['YoY'],
                                                  marker_color=colors2[1], showlegend=False), row=2, col=1)
                    fig_indices2.add_trace(go.Bar(x=aux2.dropna().iloc[-52:].index, y=aux2.dropna()['YoY'].iloc[-52:].array,
                                                  marker_color=colors2[1], showlegend=False), row=2, col=1)

                    if country == 'US' and industry == 'Pesca':
                        country_ = 'Chile'
                    else:
                        country_ = countries_dict[country]

                    spread_mw = (mw_index[country_][industry].rolling(52).apply(lambda x: (1 + x).prod()) -
                                 country_index[country_]['MW'].rolling(52).apply(lambda x: (1 + x).prod()))
                    spread_ew = (ew_index[country_][industry].rolling(52).apply(lambda x: (1 + x).prod()) -
                                 country_index[country_]['EW'].rolling(52).apply(lambda x: (1 + x).prod()))

                    spread = pd.DataFrame({'EW': spread_ew, 'MW': spread_mw})

                    fig_indices1.add_trace(go.Scatter(x=spread['MW'].dropna().index, y=spread['MW'].dropna().array,
                                                      name='Spread MW', line=dict(color=colors2[3])),
                                           secondary_y=True, row=1, col=1)

                    fig_indices2.add_trace(
                        go.Scatter(x=spread['MW'].iloc[-260:].dropna().index, y=spread['MW'].iloc[-260:].dropna().array,
                                   name='Spread MW', line=dict(color=colors2[3])),
                        secondary_y=True, row=1, col=1)

                    fig_indices1.update_xaxes(showticklabels=False)
                    fig_indices2.update_xaxes(showticklabels=False)
                    fig_indices1.layout.update(xaxis_rangeslider_visible=False, margin_b=20,
                                               margin_r=20, margin_l=20,
                                               legend=dict(orientation="h",
                                                           yanchor="top",
                                                           y=0.6,
                                                           xanchor="right",
                                                           x=1))
                    fig_indices2.layout.update(xaxis_rangeslider_visible=False,
                                               margin_b=20,
                                               margin_r=20, margin_l=20,
                                               legend=dict(orientation="h",
                                                           yanchor="top",
                                                           y=0.6,
                                                           xanchor="right",
                                                           x=1))
                    fig_indices1.update_xaxes(showticklabels=True, row=2,
                                              col=1)
                    fig_indices2.update_xaxes(showticklabels=True, row=2,
                                              col=1)

                    fig_indices1.update_yaxes(tickformat=',.0%', row=2, col=1)
                    fig_indices2.update_yaxes(tickformat=',.0%', row=2, col=1)

                    if deseason:
                        df1 = pd.DataFrame({col: data[col] -
                                            seasonal_decompose(data[col]).seasonal
                                            for col in data.columns})
                    else:
                        df1 = data

                    # Top word's table plot
                    last_week = df1.iloc[-1].sort_values(ascending=False)[:n_words] / 100
                    all_time = df1.mean().sort_values(ascending=False)[:n_words] / 100

                    fig_W = make_subplots(subplot_titles=['Top Words en ' + f'{industry} - {country}'])

                    table = pd.concat([pd.Series(last_week.index),
                                       pd.Series(all_time.index)], axis=1)
                    table.columns = ['Top 1W', 'Top 5Y']
                    fig_W.add_trace(go.Table(header=dict(values=table.columns),
                                             cells=dict(values=[table['Top 1W'].values, table['Top 5Y'].values])))
                    fig_W.update_layout(margin_b=0, margin_t=50,
                                               margin_r=0, margin_l=0,
                                               height=200)
                    fig_indices1.update_layout(margin_b=0, margin_t=50,
                                               margin_r=0, margin_l=0,
                                               height=600)
                    fig_indices2.update_layout(margin_b=0, margin_t=50,
                                               margin_r=0, margin_l=0,
                                               height=600)
                    col1.plotly_chart(fig_indices1, use_container_width=True)
                    col2.plotly_chart(fig_indices2, use_container_width=True)

                    fig_W.update_layout(margin_b=0, margin_t=30, margin_r=10, margin_l=0)
                    st.plotly_chart(fig_W, use_container_width=True)