File size: 3,550 Bytes
73c998c
 
 
 
 
 
 
 
 
a0fa350
73c998c
 
 
85b2d30
73c998c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fa350
73c998c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import streamlit as st
from exa_py import Exa
from groq import Groq

# Streamlit App Title
st.title("Company Website Analysis Tool with Exa and Groq")

# Input fields for EXA and GROQ API keys and company URL
EXA_API_KEY = st.text_input("EXA API Key", type="password")
GROQ_API_KEY = st.text_input("GROQ API Key - This demo uses llama-3.2-90b-text-preview", type="password")
input_url = st.text_input("Company URL", placeholder="huggingface.co")

# Sliders for Groq model settings
max_tokens = st.slider("Max Tokens", min_value=1024, max_value=8192, value=4096, step=1024)
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0, step=0.1)

# Button to trigger the analysis
if st.button("Analyze Company"):
    if EXA_API_KEY and GROQ_API_KEY and input_url:
        try:
            # Initialize EXA client
            exa = Exa(api_key=EXA_API_KEY)
            
            # Get 5 similar companies
            search_response = exa.find_similar_and_contents(
                input_url,
                highlights={"num_sentences": 2},
                num_results=5
            )
            companies = search_response.results
            
            # Extract the first company's data for demonstration
            c = companies[0]
            all_contents = ""
            search_response = exa.search_and_contents(
                c.url,  # Input the company's URL
                type="keyword",
                num_results=3
            )
            research_response = search_response.results
            for r in research_response:
                all_contents += r.text
            
            # Initialize GROQ client
            client = Groq(api_key=GROQ_API_KEY)
            
            # Define system message and call the Groq API for summarization
            SYSTEM_MESSAGE = (
                "You are a helpful assistant writing a research summary about a company. "
                "Summarize the user's input into multiple paragraphs. Be extremely concise, "
                "professional, and factual as possible. The first paragraph should be an introduction "
                "and summary of the company. The second paragraph should be a detailed summary of the company."
            )
            
            # Get the summary from Groq
            completion = client.chat.completions.create(
                model="llama-3.2-90b-text-preview",
                messages=[
                    {"role": "system", "content": SYSTEM_MESSAGE},
                    {"role": "user", "content": all_contents},
                ],
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=1,
                stream=False,
                stop=None,
            )
            
            # Extract summary content
            summary = completion.choices[0].message.content

            # Display the summary in Streamlit with markdown formatting for readability
            st.markdown(f"### {c.title}")
            st.markdown(summary)
        
        except Exception as e:
            st.error(f"An error occurred: {e}")
    else:
        st.warning("Please provide all inputs: EXA API Key, GROQ API Key, and Company URL.")

# Disclaimer Section
st.markdown("---")
st.caption(
    "Disclaimer: This tool is built for demonstration purposes only and should not be used as a basis for investment decisions. "
    "The analysis generated by large language models may contain inaccuracies, and the content is not intended as professional financial advice."
)