Spaces:
Sleeping
Sleeping
Lode Nachtergaele
commited on
Commit
·
b7b98b6
1
Parent(s):
3f2b17c
added climb profiles
Browse files
app.py
CHANGED
@@ -119,6 +119,9 @@ def grade_to_color(grade):
|
|
119 |
|
120 |
|
121 |
def find_climbs(df: pd.DataFrame) -> pd.DataFrame:
|
|
|
|
|
|
|
122 |
peaks, _ = find_peaks(df["smoothed_elevation"])
|
123 |
df_peaks = df.iloc[peaks, :].assign(base=0).assign(kind="peak")
|
124 |
valleys, _ = find_peaks(df["smoothed_elevation"].max() - df["smoothed_elevation"])
|
@@ -184,7 +187,14 @@ def generate_height_profile_json(df: pd.DataFrame) -> str:
|
|
184 |
|
185 |
elevation = (
|
186 |
alt.Chart(
|
187 |
-
df[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
)
|
189 |
.mark_bar()
|
190 |
.encode(
|
@@ -204,6 +214,16 @@ def generate_height_profile_json(df: pd.DataFrame) -> str:
|
|
204 |
title=None,
|
205 |
),
|
206 |
color=alt.Color("smoothed_grade_color").scale(None),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
)
|
208 |
)
|
209 |
max_elevation = df["elev"].max().round(-1)
|
@@ -272,7 +292,17 @@ def generate_height_profile_json(df: pd.DataFrame) -> str:
|
|
272 |
df_peaks_filtered.reset_index(drop=True)
|
273 |
.assign(number=lambda df_: df_.index + 1)
|
274 |
.assign(circle_pos=lambda df_: df_["max_elevation"] + 20)[
|
275 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
]
|
277 |
)
|
278 |
# annotation = (
|
@@ -294,6 +324,19 @@ def generate_height_profile_json(df: pd.DataFrame) -> str:
|
|
294 |
),
|
295 |
y="max_elevation",
|
296 |
text="number",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
)
|
298 |
)
|
299 |
chart = (
|
@@ -306,15 +349,47 @@ def generate_height_profile_json(df: pd.DataFrame) -> str:
|
|
306 |
return chart, df_peaks_filtered
|
307 |
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
gpx_file = st.file_uploader("Upload gpx file", type=["gpx"])
|
310 |
|
311 |
if gpx_file is not None:
|
312 |
ave_lat, ave_lon, lon_list, lat_list, h_list = get_gpx(gpx_file)
|
313 |
df = pd.DataFrame({"lon": lon_list, "lat": lat_list, "elev": h_list})
|
314 |
-
route_map = folium.Map(
|
315 |
-
location=[ave_lat, ave_lon],
|
316 |
-
zoom_start=12,
|
317 |
-
)
|
318 |
folium.PolyLine(
|
319 |
list(zip(lat_list, lon_list)), color="red", weight=2.5, opacity=1
|
320 |
).add_to(route_map)
|
@@ -338,15 +413,62 @@ if gpx_file is not None:
|
|
338 |
if row["length"] >= 1
|
339 |
else f"{row['length']*1000:.0f} m"
|
340 |
)
|
341 |
-
popup_text = f"""
|
342 |
-
|
|
|
|
|
|
|
343 |
popup = folium.Popup(popup_text, min_width=100, max_width=200)
|
344 |
folium.Marker(
|
345 |
[row["lat"], row["lon"]],
|
346 |
-
popup=popup,
|
347 |
icon=icon_div,
|
348 |
).add_to(route_map)
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
st.table(
|
352 |
df_peaks[
|
@@ -354,6 +476,28 @@ if gpx_file is not None:
|
|
354 |
].reset_index(drop=True)
|
355 |
)
|
356 |
|
357 |
-
st_data = st_folium(route_map, height=
|
358 |
|
359 |
st.altair_chart(chart, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
def find_climbs(df: pd.DataFrame) -> pd.DataFrame:
|
122 |
+
"""Detect all valleys and peaks. Filter out climbs and
|
123 |
+
add meta data (lenght, meters climbed, average grade, climb_score, ...)
|
124 |
+
"""
|
125 |
peaks, _ = find_peaks(df["smoothed_elevation"])
|
126 |
df_peaks = df.iloc[peaks, :].assign(base=0).assign(kind="peak")
|
127 |
valleys, _ = find_peaks(df["smoothed_elevation"].max() - df["smoothed_elevation"])
|
|
|
187 |
|
188 |
elevation = (
|
189 |
alt.Chart(
|
190 |
+
df[
|
191 |
+
[
|
192 |
+
"distance_from_start",
|
193 |
+
"smoothed_elevation",
|
194 |
+
"smoothed_grade_color",
|
195 |
+
"grade",
|
196 |
+
]
|
197 |
+
]
|
198 |
)
|
199 |
.mark_bar()
|
200 |
.encode(
|
|
|
214 |
title=None,
|
215 |
),
|
216 |
color=alt.Color("smoothed_grade_color").scale(None),
|
217 |
+
tooltip=[
|
218 |
+
alt.Tooltip(
|
219 |
+
"distance_from_start:Q", title="Distance (km)", format=".2f"
|
220 |
+
),
|
221 |
+
alt.Tooltip("smoothed_elevation:Q", title="Elevation (m)", format="d"),
|
222 |
+
alt.Tooltip("grade_percent:Q", title="Grade (%)", format=".0%"),
|
223 |
+
],
|
224 |
+
)
|
225 |
+
.transform_calculate(
|
226 |
+
grade_percent="datum.grade/100",
|
227 |
)
|
228 |
)
|
229 |
max_elevation = df["elev"].max().round(-1)
|
|
|
292 |
df_peaks_filtered.reset_index(drop=True)
|
293 |
.assign(number=lambda df_: df_.index + 1)
|
294 |
.assign(circle_pos=lambda df_: df_["max_elevation"] + 20)[
|
295 |
+
[
|
296 |
+
"distance_from_start",
|
297 |
+
"max_elevation",
|
298 |
+
"circle_pos",
|
299 |
+
"number",
|
300 |
+
"length",
|
301 |
+
"total_ascent",
|
302 |
+
"grade",
|
303 |
+
"climb_score",
|
304 |
+
"prev_distance_from_start",
|
305 |
+
]
|
306 |
]
|
307 |
)
|
308 |
# annotation = (
|
|
|
324 |
),
|
325 |
y="max_elevation",
|
326 |
text="number",
|
327 |
+
tooltip=[
|
328 |
+
alt.Tooltip(
|
329 |
+
"prev_distance_from_start:Q", title="Starts at (km)", format=".2f"
|
330 |
+
),
|
331 |
+
alt.Tooltip("total_ascent:Q", title="Total ascent (m)", format="d"),
|
332 |
+
alt.Tooltip("length:Q", title="Length (km)", format=".2f"),
|
333 |
+
alt.Tooltip("grade_percent:Q", title="Average Grade", format=".0%"),
|
334 |
+
alt.Tooltip("climb_score:Q", title="Climb score", format="d"),
|
335 |
+
],
|
336 |
+
)
|
337 |
+
.transform_calculate(
|
338 |
+
grade_percent="datum.grade/(100*1000)",
|
339 |
+
# total_ascent_int="Math.round(datum.total_ascent)",
|
340 |
)
|
341 |
)
|
342 |
chart = (
|
|
|
349 |
return chart, df_peaks_filtered
|
350 |
|
351 |
|
352 |
+
def generate_climb_profile(df_hill: pd.DataFrame, title: str):
|
353 |
+
climb_profile = (
|
354 |
+
alt.Chart(
|
355 |
+
df_hill,
|
356 |
+
title=alt.Title(
|
357 |
+
title,
|
358 |
+
anchor="start",
|
359 |
+
),
|
360 |
+
)
|
361 |
+
.mark_area()
|
362 |
+
.encode(
|
363 |
+
x=alt.X("distance_from_start")
|
364 |
+
.axis(grid=False, tickCount=10, labelExpr="datum.label + ' m'", title=None)
|
365 |
+
.scale(domain=(0, df_hill["distance_from_start"].max())),
|
366 |
+
y=alt.Y("elev").axis(
|
367 |
+
domain=False,
|
368 |
+
ticks=False,
|
369 |
+
tickCount=5,
|
370 |
+
labelExpr="datum.label + ' m'",
|
371 |
+
title=None,
|
372 |
+
),
|
373 |
+
color=alt.Color("color_grade").scale(None),
|
374 |
+
tooltip=[
|
375 |
+
alt.Tooltip("distance_from_start:Q", title="Distance (m)", format="d"),
|
376 |
+
alt.Tooltip("elev:Q", title="Elevation (m)", format="d"),
|
377 |
+
alt.Tooltip("grade_percent:Q", title="Grade (%)", format=".0%"),
|
378 |
+
],
|
379 |
+
)
|
380 |
+
.transform_calculate(
|
381 |
+
grade_percent="datum.grade/100",
|
382 |
+
)
|
383 |
+
)
|
384 |
+
return climb_profile
|
385 |
+
|
386 |
+
|
387 |
gpx_file = st.file_uploader("Upload gpx file", type=["gpx"])
|
388 |
|
389 |
if gpx_file is not None:
|
390 |
ave_lat, ave_lon, lon_list, lat_list, h_list = get_gpx(gpx_file)
|
391 |
df = pd.DataFrame({"lon": lon_list, "lat": lat_list, "elev": h_list})
|
392 |
+
route_map = folium.Map(location=[ave_lat, ave_lon], zoom_start=12, height=400)
|
|
|
|
|
|
|
393 |
folium.PolyLine(
|
394 |
list(zip(lat_list, lon_list)), color="red", weight=2.5, opacity=1
|
395 |
).add_to(route_map)
|
|
|
413 |
if row["length"] >= 1
|
414 |
else f"{row['length']*1000:.0f} m"
|
415 |
)
|
416 |
+
popup_text = f"""Climb {index+1}<br>
|
417 |
+
Lenght: {length}<br>
|
418 |
+
Avg. grade: {row['grade']/1000:.1f}%<br>
|
419 |
+
Total ascend: {int(row['total_ascent'])}m
|
420 |
+
"""
|
421 |
popup = folium.Popup(popup_text, min_width=100, max_width=200)
|
422 |
folium.Marker(
|
423 |
[row["lat"], row["lon"]],
|
424 |
+
# popup=popup,
|
425 |
icon=icon_div,
|
426 |
).add_to(route_map)
|
427 |
+
|
428 |
+
df_hill = (
|
429 |
+
df[
|
430 |
+
df["distance_from_start"].between(
|
431 |
+
row["prev_distance_from_start"],
|
432 |
+
row["distance_from_start"],
|
433 |
+
)
|
434 |
+
]
|
435 |
+
.assign(
|
436 |
+
distance_from_start=lambda df_: (
|
437 |
+
df_["distance_from_start"] - row["prev_distance_from_start"]
|
438 |
+
)
|
439 |
+
* 1_000
|
440 |
+
)
|
441 |
+
.assign(color_grade=lambda df_: df_["grade"].map(grade_to_color))
|
442 |
+
)
|
443 |
+
# df_hill_resample = df_hill.groupby((df_hill["distance_from_start"]*1000).round(-2)).agg({"elev":"mean", "grade":"mean"}).reset_index()
|
444 |
+
# df_hill_resample["color_grade"] = df_resampled["grade"].map(grade_to_color)
|
445 |
+
title = f"Climb {index+1}: {row['length']:.2f}km {(row['grade']/100_000):.2%} {int(row['total_ascent']):d}hm"
|
446 |
+
climb_profile = generate_climb_profile(df_hill, title)
|
447 |
+
climb_profile_json = json.loads(climb_profile.to_json())
|
448 |
+
|
449 |
+
vega = folium.features.VegaLite(
|
450 |
+
climb_profile_json,
|
451 |
+
width=200,
|
452 |
+
height=200,
|
453 |
+
)
|
454 |
+
circle = folium.CircleMarker(
|
455 |
+
radius=15,
|
456 |
+
location=[row["lat"], row["lon"]],
|
457 |
+
# tooltip = label,
|
458 |
+
color="crimson",
|
459 |
+
fill=True,
|
460 |
+
)
|
461 |
+
# popup = folium.Popup()
|
462 |
+
# vega.add_to(popup)
|
463 |
+
popup.add_to(circle)
|
464 |
+
circle.add_to(route_map)
|
465 |
+
# circle_marker = folium.CircleMarker(
|
466 |
+
# [row["lat"], row["lon"]],
|
467 |
+
# radius=15,
|
468 |
+
# popup=folium.Popup(max_width=400).add_child(
|
469 |
+
# folium.VegaLite(climb_profile_json, width=400, height=400)
|
470 |
+
# ),
|
471 |
+
# )
|
472 |
|
473 |
st.table(
|
474 |
df_peaks[
|
|
|
476 |
].reset_index(drop=True)
|
477 |
)
|
478 |
|
479 |
+
st_data = st_folium(route_map, height=600, width=850)
|
480 |
|
481 |
st.altair_chart(chart, use_container_width=True)
|
482 |
+
|
483 |
+
for index, row in df_peaks.reset_index(drop=True).iterrows():
|
484 |
+
df_hill = (
|
485 |
+
df[
|
486 |
+
df["distance_from_start"].between(
|
487 |
+
row["prev_distance_from_start"],
|
488 |
+
row["distance_from_start"],
|
489 |
+
)
|
490 |
+
]
|
491 |
+
.assign(
|
492 |
+
distance_from_start=lambda df_: (
|
493 |
+
df_["distance_from_start"] - row["prev_distance_from_start"]
|
494 |
+
)
|
495 |
+
* 1_000
|
496 |
+
)
|
497 |
+
.assign(color_grade=lambda df_: df_["grade"].map(grade_to_color))
|
498 |
+
)
|
499 |
+
# df_hill_resample = df_hill.groupby((df_hill["distance_from_start"]*1000).round(-2)).agg({"elev":"mean", "grade":"mean"}).reset_index()
|
500 |
+
# df_hill_resample["color_grade"] = df_resampled["grade"].map(grade_to_color)
|
501 |
+
title = f"Climb {index+1}: {row['length']:.2f}km {(row['grade']/100_000):.2%} {int(row['total_ascent']):d}hm"
|
502 |
+
climb_profile = generate_climb_profile(df_hill, title)
|
503 |
+
st.altair_chart(climb_profile, use_container_width=True)
|