Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import duckdb
|
2 |
+
import gradio as gr
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sentence_transformers.models import StaticEmbedding
|
5 |
+
|
6 |
+
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M")
|
7 |
+
model = SentenceTransformer(modules=[static_embedding])
|
8 |
+
embedding_dimensions = model.get_sentence_embedding_dimension()
|
9 |
+
dataset_name = "cast42/x_likes_embeddings_potion_base_8M"
|
10 |
+
embedding_column = "embeddings"
|
11 |
+
embedding_column_float = f"{embedding_column}_float"
|
12 |
+
table_name = "fineweb"
|
13 |
+
|
14 |
+
duckdb.sql(
|
15 |
+
query=f"""
|
16 |
+
INSTALL vss;
|
17 |
+
LOAD vss;
|
18 |
+
CREATE TABLE {table_name} AS
|
19 |
+
SELECT *, {embedding_column}::float[{embedding_dimensions}] as {embedding_column_float}
|
20 |
+
FROM 'hf://datasets/{dataset_name}/**/*.parquet';
|
21 |
+
CREATE INDEX my_hnsw_index ON {table_name} USING HNSW ({embedding_column_float}) WITH (metric = 'cosine');
|
22 |
+
"""
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def similarity_search(query: str, k: int = 5):
|
27 |
+
embedding = model.encode(query).tolist()
|
28 |
+
df = duckdb.sql(
|
29 |
+
query=f"""
|
30 |
+
SELECT *, array_cosine_distance({embedding_column_float}, {embedding}::FLOAT[{embedding_dimensions}]) as distance
|
31 |
+
FROM {table_name}
|
32 |
+
ORDER BY distance
|
33 |
+
LIMIT {k};
|
34 |
+
"""
|
35 |
+
).to_df()
|
36 |
+
df = df.drop(columns=[embedding_column, embedding_column_float])
|
37 |
+
return df
|
38 |
+
|
39 |
+
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown("""# RAG - retrieve
|
42 |
+
Executes vector search on top of [x_likes_embeddings_potion_base_8M](https://huggingface.co/datasets/cast42/x_likes_embeddings_potion_base_8M) using DuckDB.
|
43 |
+
|
44 |
+
Part of [AI blueprint](https://github.com/huggingface/ai-blueprint) - a blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs. """)
|
45 |
+
query = gr.Textbox(label="Query")
|
46 |
+
k = gr.Slider(1, 50, value=5, label="Number of results")
|
47 |
+
btn = gr.Button("Search")
|
48 |
+
results = gr.Dataframe(headers=["url", "chunk", "distance"], wrap=True)
|
49 |
+
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
50 |
+
|
51 |
+
|
52 |
+
demo.launch()
|