cbendale10 commited on
Commit
9fc7857
·
verified ·
1 Parent(s): 5195e23

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +8 -13
  2. app.py +69 -0
  3. requirements.txt +3 -3
Dockerfile CHANGED
@@ -1,21 +1,16 @@
 
1
  FROM python:3.9-slim
2
 
 
3
  WORKDIR /app
4
 
5
- RUN apt-get update && apt-get install -y \
6
- build-essential \
7
- curl \
8
- software-properties-common \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY requirements.txt ./
13
- COPY src/ ./src/
14
 
 
15
  RUN pip3 install -r requirements.txt
16
 
17
- EXPOSE 8501
18
-
19
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
20
 
21
- ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
1
+ # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
 
4
+ # Set the working directory inside the container to /app
5
  WORKDIR /app
6
 
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
 
 
 
 
 
 
 
9
 
10
+ # Install Python dependencies listed in requirements.txt
11
  RUN pip3 install -r requirements.txt
12
 
13
+ # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
 
15
 
16
+ # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import requests
4
+
5
+ # Set the title
6
+ st.title("SuperKart Sales Forecasting")
7
+
8
+ # Section: Online Prediction
9
+ st.subheader("Predict Sales for a Single Product-Store")
10
+
11
+ # Collect input features from the user
12
+ product_weight = st.number_input("Product Weight", min_value=0.0, step=0.1, value=12.5)
13
+ product_sugar_content = st.selectbox("Product Sugar Content", ["Low Sugar", "No Sugar", "Regular", "High Sugar"])
14
+ product_allocated_area = st.number_input("Product Allocated Area", min_value=0.0, step=0.01, value=0.05)
15
+ product_type = st.selectbox("Product Type", [
16
+ "Fruits and Vegetables", "Dairy", "Baking Goods", "Breads", "Breakfast", "Canned", "Meat",
17
+ "Household", "Frozen Foods", "Snack Foods", "Soft Drinks", "Hard Drinks", "Health and Hygiene",
18
+ "Others", "Seafood", "Starchy Foods"
19
+ ])
20
+ product_mrp = st.number_input("Product MRP", min_value=0.0, step=1.0, value=150.0)
21
+ store_id = st.selectbox("Store ID", ["OUT001", "OUT002", "OUT003", "OUT004"])
22
+ store_establishment_year = st.selectbox("Store Establishment Year", list(range(1987, 2010)))
23
+ store_size = st.selectbox("Store Size", ["Small", "Medium", "High"])
24
+ store_location_city_type = st.selectbox("Store Location Type", ["Tier 1", "Tier 2", "Tier 3"])
25
+ store_type = st.selectbox("Store Type", ["Supermarket Type1", "Supermarket Type2", "Supermarket Type3", "Grocery Store"])
26
+
27
+ # Package into a dictionary and convert to DataFrame
28
+ input_data = pd.DataFrame([{
29
+ "Product_Weight": product_weight,
30
+ "Product_Sugar_Content": product_sugar_content,
31
+ "Product_Allocated_Area": product_allocated_area,
32
+ "Product_Type": product_type,
33
+ "Product_MRP": product_mrp,
34
+ "Store_Id": store_id,
35
+ "Store_Establishment_Year": store_establishment_year,
36
+ "Store_Size": store_size,
37
+ "Store_Location_City_Type": store_location_city_type,
38
+ "Store_Type": store_type
39
+ }])
40
+
41
+ # Predict button
42
+ if st.button("Predict Sales"):
43
+ response = requests.post(
44
+ "https://cbendale10-SuperKartSalesApi.hf.space/v1/sales",
45
+ json=input_data.to_dict(orient='records')[0]
46
+ )
47
+ if response.status_code == 200:
48
+ result = response.json()['Predicted Quarterly Sales (₹)']
49
+ st.success(f"Predicted Sales: ₹{result}")
50
+ else:
51
+ st.error("Error occurred during prediction.")
52
+
53
+ # Section: Batch Prediction
54
+ st.subheader("Batch Prediction (Upload CSV)")
55
+
56
+ uploaded_file = st.file_uploader("Upload a CSV file for batch prediction", type=["csv"])
57
+
58
+ if uploaded_file is not None:
59
+ if st.button("Predict Batch"):
60
+ response = requests.post(
61
+ "https://cbendale10-SuperKartSalesApi.hf.space/v1/salesbatch",
62
+ files={"file": uploaded_file}
63
+ )
64
+ if response.status_code == 200:
65
+ predictions = response.json()
66
+ st.success("Batch prediction completed!")
67
+ st.write(predictions)
68
+ else:
69
+ st.error("Failed to get batch predictions.")
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- altair
2
- pandas
3
- streamlit
 
1
+ pandas==2.2.2
2
+ requests==2.28.1
3
+ streamlit==1.43.2