Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +8 -13
- app.py +69 -0
- requirements.txt +3 -3
Dockerfile
CHANGED
|
@@ -1,21 +1,16 @@
|
|
|
|
|
| 1 |
FROM python:3.9-slim
|
| 2 |
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
curl \
|
| 8 |
-
software-properties-common \
|
| 9 |
-
git \
|
| 10 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
-
|
| 12 |
-
COPY requirements.txt ./
|
| 13 |
-
COPY src/ ./src/
|
| 14 |
|
|
|
|
| 15 |
RUN pip3 install -r requirements.txt
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
| 20 |
|
| 21 |
-
|
|
|
|
| 1 |
+
# Use a minimal base image with Python 3.9 installed
|
| 2 |
FROM python:3.9-slim
|
| 3 |
|
| 4 |
+
# Set the working directory inside the container to /app
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
+
# Copy all files from the current directory on the host to the container's /app directory
|
| 8 |
+
COPY . .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Install Python dependencies listed in requirements.txt
|
| 11 |
RUN pip3 install -r requirements.txt
|
| 12 |
|
| 13 |
+
# Define the command to run the Streamlit app on port 8501 and make it accessible externally
|
| 14 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
|
|
|
| 15 |
|
| 16 |
+
# NOTE: Disable XSRF protection for easier external access in order to make batch predictions
|
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
# Set the title
|
| 6 |
+
st.title("SuperKart Sales Forecasting")
|
| 7 |
+
|
| 8 |
+
# Section: Online Prediction
|
| 9 |
+
st.subheader("Predict Sales for a Single Product-Store")
|
| 10 |
+
|
| 11 |
+
# Collect input features from the user
|
| 12 |
+
product_weight = st.number_input("Product Weight", min_value=0.0, step=0.1, value=12.5)
|
| 13 |
+
product_sugar_content = st.selectbox("Product Sugar Content", ["Low Sugar", "No Sugar", "Regular", "High Sugar"])
|
| 14 |
+
product_allocated_area = st.number_input("Product Allocated Area", min_value=0.0, step=0.01, value=0.05)
|
| 15 |
+
product_type = st.selectbox("Product Type", [
|
| 16 |
+
"Fruits and Vegetables", "Dairy", "Baking Goods", "Breads", "Breakfast", "Canned", "Meat",
|
| 17 |
+
"Household", "Frozen Foods", "Snack Foods", "Soft Drinks", "Hard Drinks", "Health and Hygiene",
|
| 18 |
+
"Others", "Seafood", "Starchy Foods"
|
| 19 |
+
])
|
| 20 |
+
product_mrp = st.number_input("Product MRP", min_value=0.0, step=1.0, value=150.0)
|
| 21 |
+
store_id = st.selectbox("Store ID", ["OUT001", "OUT002", "OUT003", "OUT004"])
|
| 22 |
+
store_establishment_year = st.selectbox("Store Establishment Year", list(range(1987, 2010)))
|
| 23 |
+
store_size = st.selectbox("Store Size", ["Small", "Medium", "High"])
|
| 24 |
+
store_location_city_type = st.selectbox("Store Location Type", ["Tier 1", "Tier 2", "Tier 3"])
|
| 25 |
+
store_type = st.selectbox("Store Type", ["Supermarket Type1", "Supermarket Type2", "Supermarket Type3", "Grocery Store"])
|
| 26 |
+
|
| 27 |
+
# Package into a dictionary and convert to DataFrame
|
| 28 |
+
input_data = pd.DataFrame([{
|
| 29 |
+
"Product_Weight": product_weight,
|
| 30 |
+
"Product_Sugar_Content": product_sugar_content,
|
| 31 |
+
"Product_Allocated_Area": product_allocated_area,
|
| 32 |
+
"Product_Type": product_type,
|
| 33 |
+
"Product_MRP": product_mrp,
|
| 34 |
+
"Store_Id": store_id,
|
| 35 |
+
"Store_Establishment_Year": store_establishment_year,
|
| 36 |
+
"Store_Size": store_size,
|
| 37 |
+
"Store_Location_City_Type": store_location_city_type,
|
| 38 |
+
"Store_Type": store_type
|
| 39 |
+
}])
|
| 40 |
+
|
| 41 |
+
# Predict button
|
| 42 |
+
if st.button("Predict Sales"):
|
| 43 |
+
response = requests.post(
|
| 44 |
+
"https://cbendale10-SuperKartSalesApi.hf.space/v1/sales",
|
| 45 |
+
json=input_data.to_dict(orient='records')[0]
|
| 46 |
+
)
|
| 47 |
+
if response.status_code == 200:
|
| 48 |
+
result = response.json()['Predicted Quarterly Sales (₹)']
|
| 49 |
+
st.success(f"Predicted Sales: ₹{result}")
|
| 50 |
+
else:
|
| 51 |
+
st.error("Error occurred during prediction.")
|
| 52 |
+
|
| 53 |
+
# Section: Batch Prediction
|
| 54 |
+
st.subheader("Batch Prediction (Upload CSV)")
|
| 55 |
+
|
| 56 |
+
uploaded_file = st.file_uploader("Upload a CSV file for batch prediction", type=["csv"])
|
| 57 |
+
|
| 58 |
+
if uploaded_file is not None:
|
| 59 |
+
if st.button("Predict Batch"):
|
| 60 |
+
response = requests.post(
|
| 61 |
+
"https://cbendale10-SuperKartSalesApi.hf.space/v1/salesbatch",
|
| 62 |
+
files={"file": uploaded_file}
|
| 63 |
+
)
|
| 64 |
+
if response.status_code == 200:
|
| 65 |
+
predictions = response.json()
|
| 66 |
+
st.success("Batch prediction completed!")
|
| 67 |
+
st.write(predictions)
|
| 68 |
+
else:
|
| 69 |
+
st.error("Failed to get batch predictions.")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
streamlit
|
|
|
|
| 1 |
+
pandas==2.2.2
|
| 2 |
+
requests==2.28.1
|
| 3 |
+
streamlit==1.43.2
|