import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download import plotly.graph_objects as go import plotly.express as px from src.about import Tasks, AssetTasks, UncertaintyTasks from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, ASSET_BENCHMARK_COLS, UNCERTAINTY_BENCHMARK_COLS, COLS, ASSET_COLS, UNCERTAINTY_COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, AutoEvalColumnAsset, AutoEvalColumnUncertainty, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval from src.about import Tasks, AssetTasks def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: print('error') restart_space() LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, Tasks) print(ASSET_COLS) ASSET_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ASSET_COLS, ASSET_BENCHMARK_COLS, AssetTasks) UNCERTAINTY_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, UNCERTAINTY_COLS, UNCERTAINTY_BENCHMARK_COLS, UncertaintyTasks) missing_uncertainties = (UNCERTAINTY_LEADERBOARD_DF[UNCERTAINTY_BENCHMARK_COLS] == 0).all(axis=1) UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF[~missing_uncertainties] UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF.loc[:,~UNCERTAINTY_LEADERBOARD_DF.columns.duplicated()] ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_asset_plot(df): acc_col = 'Average ⬆️' df = df.sort_values(acc_col).tail(3) fig = go.Figure() asset_tasks = [task.value.col_name for task in AssetTasks] for _, row in df.iterrows(): fig.add_trace(go.Scatterpolar( r=[row[asset_task] for asset_task in asset_tasks], theta=asset_tasks, opacity = 0.5, fill='toself', name=row['Model'], ) ) fig.update_layout( autosize=False, width=1000, height=700, title=f"Top 3 accuracies breakdown" ) return fig def init_perf_plot(df): df = df.copy() params_col = '#Params (B)' df["symbol"] = 2 # Triangle df["color"] = "" df.loc[df["Model"].str.contains("granite"), "color"] = "grey" acc_col = 'Average ⬆️' fig = go.Figure() for i in df.index: fig.add_trace( go.Scatter( x=[df.loc[i, params_col]], y=[df.loc[i, acc_col]], name=df.loc[i, "Model"], # hovertemplate="%{text}

", text=[df.loc[i, "Model"]] ) ) fig.update_layout( autosize=False, width=650, height=600, title=f"Model Size Vs Accuracy", xaxis_title=f"{params_col}", yaxis_title="Accuracy", ) return fig def init_leaderboard(dataframe, auto_eval_col_class): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(auto_eval_col_class)], select_columns=SelectColumns( default_selection=[c.name for c in fields(auto_eval_col_class) if c.displayed_by_default], cant_deselect=[c.name for c in fields(auto_eval_col_class) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[auto_eval_col_class.model.name, auto_eval_col_class.license.name], hide_columns=[c.name for c in fields(auto_eval_col_class) if c.hidden], filter_columns=[ ColumnFilter(auto_eval_col_class.model_type.name, type="checkboxgroup", label="Model types"), ColumnFilter(auto_eval_col_class.precision.name, type="checkboxgroup", label="Precision"), ColumnFilter( auto_eval_col_class.params.name, type="slider", min=0.01, max=800, label="Select the number of parameters (B)", ), ColumnFilter( auto_eval_col_class.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False ), ], bool_checkboxgroup_label="Hide models", interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF, AutoEvalColumn) with gr.TabItem("🛠️ Asset Benchmark", elem_id="llm-benchmark-asset-tab-table", id=1): leaderboard = init_leaderboard(ASSET_LEADERBOARD_DF, AutoEvalColumnAsset) with gr.TabItem("😵‍💫 Uncertainty Benchmark", elem_id="llm-benchmark-asset-tab-table", id=2): leaderboard = init_leaderboard(UNCERTAINTY_LEADERBOARD_DF, AutoEvalColumnUncertainty) with gr.TabItem("📊 Performance Plot", elem_id="llm-benchmark-tab-table", id=3): print(LEADERBOARD_DF.columns) # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") perf_plot = gr.components.Plot( # value=init_perf_plot(LEADERBOARD_DF), value=init_asset_plot(ASSET_LEADERBOARD_DF), elem_id="bs1-plot", show_label=False, ) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=4): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=5): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Column(): with gr.Accordion( f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False, ): with gr.Row(): finished_eval_table = gr.components.Dataframe( value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False, ): with gr.Row(): running_eval_table = gr.components.Dataframe( value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Accordion( f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False, ): with gr.Row(): pending_eval_table = gr.components.Dataframe( value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5, ) with gr.Row(): gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox(label="Model name") revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") model_type = gr.Dropdown( choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], label="Model type", multiselect=False, value=None, interactive=True, ) with gr.Column(): precision = gr.Dropdown( choices=[i.value.name for i in Precision if i != Precision.Unknown], label="Precision", multiselect=False, value="float16", interactive=True, ) weight_type = gr.Dropdown( choices=[i.value.name for i in WeightType], label="Weights type", multiselect=False, value="Original", interactive=True, ) base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type, ], submission_result, ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()