Spaces:
Running
on
A10G
Running
on
A10G
import math | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import utils | |
from accelerate import Accelerator | |
from accelerate.utils import ( | |
DistributedDataParallelKwargs, | |
ProjectConfiguration, | |
set_seed, | |
) | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.utils.torch_utils import is_compiled_module | |
from losses import * | |
# from peft import LoraConfig, set_peft_model_state_dict | |
from tqdm import tqdm | |
class ADPipeline(StableDiffusionXLPipeline): | |
def freeze(self): | |
self.unet.requires_grad_(False) | |
self.text_encoder.requires_grad_(False) | |
self.text_encoder_2.requires_grad_(False) | |
self.vae.requires_grad_(False) | |
self.classifier.requires_grad_(False) | |
def image2latent(self, image): | |
dtype = next(self.vae.parameters()).dtype | |
device = self._execution_device | |
image = image.to(device=device, dtype=dtype) * 2.0 - 1.0 | |
latent = self.vae.encode(image)["latent_dist"].mean | |
latent = latent * self.vae.config.scaling_factor | |
return latent | |
def latent2image(self, latent): | |
dtype = next(self.vae.parameters()).dtype | |
device = self._execution_device | |
latent = latent.to(device=device, dtype=dtype) | |
latent = latent / self.vae.config.scaling_factor | |
image = self.vae.decode(latent)[0] | |
return (image * 0.5 + 0.5).clamp(0, 1) | |
def init(self, enable_gradient_checkpoint): | |
self.freeze() | |
weight_dtype = torch.float32 | |
if self.accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif self.accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
self.unet.to(self.accelerator.device, dtype=weight_dtype) | |
self.vae.to(self.accelerator.device, dtype=weight_dtype) | |
self.text_encoder.to(self.accelerator.device, dtype=weight_dtype) | |
self.text_encoder_2.to(self.accelerator.device, dtype=weight_dtype) | |
self.classifier.to(self.accelerator.device, dtype=weight_dtype) | |
self.classifier = self.accelerator.prepare(self.classifier) | |
if enable_gradient_checkpoint: | |
self.classifier.enable_gradient_checkpointing() | |
# self.classifier.train() | |
def sample( | |
self, | |
lr=0.05, | |
iters=1, | |
adain=True, | |
controller=None, | |
style_image=None, | |
mixed_precision="no", | |
init_from_style=False, | |
start_time=999, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
clip_skip: Optional[int] = None, | |
enable_gradient_checkpoint=False, | |
**kwargs, | |
): | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = denoising_end | |
self._interrupt = False | |
self.accelerator = Accelerator( | |
mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
) | |
self.init(enable_gradient_checkpoint) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) | |
if self.cross_attention_kwargs is not None | |
else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
null_add_time_ids = add_time_ids.to(device) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = self._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat( | |
[negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 8.1 Apply denoising_end | |
if ( | |
self.denoising_end is not None | |
and isinstance(self.denoising_end, float) | |
and self.denoising_end > 0 | |
and self.denoising_end < 1 | |
): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len( | |
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
) | |
timesteps = timesteps[:num_inference_steps] | |
# 9. Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
batch_size * num_images_per_prompt | |
) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
self.timestep_cond = timestep_cond | |
(null_embeds, _, null_pooled_embeds, _) = self.encode_prompt("", device=device) | |
added_cond_kwargs = { | |
"text_embeds": add_text_embeds, | |
"time_ids": add_time_ids | |
} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
added_cond_kwargs["image_embeds"] = image_embeds | |
self.scheduler.set_timesteps(num_inference_steps) | |
timesteps = self.scheduler.timesteps | |
style_latent = self.image2latent(style_image) | |
if init_from_style: | |
latents = torch.cat([style_latent] * latents.shape[0]) | |
noise = torch.randn_like(latents) | |
latents = self.scheduler.add_noise( | |
latents, | |
noise, | |
torch.tensor([999]), | |
) | |
self.style_latent = style_latent | |
self.null_embeds_for_latents = torch.cat([null_embeds] * (latents.shape[0])) | |
self.null_embeds_for_style = torch.cat([null_embeds] * style_latent.shape[0]) | |
self.null_added_cond_kwargs_for_latents = { | |
"text_embeds": torch.cat([null_pooled_embeds] * (latents.shape[0])), | |
"time_ids": torch.cat([null_add_time_ids] * (latents.shape[0])), | |
} | |
self.null_added_cond_kwargs_for_style = { | |
"text_embeds": torch.cat([null_pooled_embeds] * style_latent.shape[0]), | |
"time_ids": torch.cat([null_add_time_ids] * style_latent.shape[0]), | |
} | |
self.adain = adain | |
self.cache = utils.DataCache() | |
self.controller = controller | |
utils.register_attn_control( | |
self.classifier, controller=controller, cache=self.cache | |
) | |
print("Total self attention layers of Unet: ", controller.num_self_layers) | |
print("Self attention layers for AD: ", controller.self_layers) | |
pbar = tqdm(timesteps, desc="Sample") | |
for i, t in enumerate(pbar): | |
with torch.no_grad(): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) | |
if self.do_classifier_free_guidance | |
else latents | |
) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if iters > 0 and t < start_time: | |
latents = self.AD(latents, t, lr, iters, pbar) | |
# Offload all models | |
# self.enable_model_cpu_offload() | |
images = self.latent2image(latents) | |
self.maybe_free_model_hooks() | |
return images | |
def AD(self, latents, t, lr, iters, pbar): | |
t = max( | |
t | |
- self.scheduler.config.num_train_timesteps | |
// self.scheduler.num_inference_steps, | |
torch.tensor([0], device=self.device), | |
) | |
if self.adain: | |
noise = torch.randn_like(self.style_latent) | |
style_latent = self.scheduler.add_noise(self.style_latent, noise, t) | |
latents = utils.adain(latents, style_latent) | |
with torch.no_grad(): | |
qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
self.style_latent, | |
t, | |
self.null_embeds_for_style, | |
self.timestep_cond, | |
self.null_added_cond_kwargs_for_style, | |
add_noise=True, | |
) | |
# latents = latents.to(dtype=torch.float32) | |
latents = latents.detach() | |
optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
optimizer, latents = self.accelerator.prepare(optimizer, latents) | |
for j in range(iters): | |
optimizer.zero_grad() | |
q_list, k_list, v_list, self_out_list = self.extract_feature( | |
latents, | |
t, | |
self.null_embeds_for_latents, | |
self.timestep_cond, | |
self.null_added_cond_kwargs_for_latents, | |
add_noise=False, | |
) | |
loss = ad_loss(q_list, ks_list, vs_list, self_out_list) | |
self.accelerator.backward(loss) | |
optimizer.step() | |
pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
latents = latents.detach() | |
return latents | |
def extract_feature( | |
self, | |
latent, | |
t, | |
encoder_hidden_states, | |
timestep_cond, | |
added_cond_kwargs, | |
add_noise=False, | |
): | |
self.cache.clear() | |
self.controller.step() | |
if add_noise: | |
noise = torch.randn_like(latent) | |
latent_ = self.scheduler.add_noise(latent, noise, t) | |
else: | |
latent_ = latent | |
self.classifier( | |
latent_, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep_cond=timestep_cond, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
return self.cache.get() | |