import math import numpy as np import torch import torch.nn.functional as F loss_fn = torch.nn.L1Loss() def ad_loss( q_list, ks_list, vs_list, self_out_list, scale=1, source_mask=None, target_mask=None ): loss = 0 attn_mask = None for q, ks, vs, self_out in zip(q_list, ks_list, vs_list, self_out_list): if source_mask is not None and target_mask is not None: w = h = int(np.sqrt(q.shape[2])) mask_1 = torch.flatten(F.interpolate(source_mask, size=(h, w))) mask_2 = torch.flatten(F.interpolate(target_mask, size=(h, w))) attn_mask = mask_1.unsqueeze(0) == mask_2.unsqueeze(1) attn_mask=attn_mask.to(q.device) target_out = F.scaled_dot_product_attention( q * scale, torch.cat(torch.chunk(ks, ks.shape[0]), 2).repeat(q.shape[0], 1, 1, 1), torch.cat(torch.chunk(vs, vs.shape[0]), 2).repeat(q.shape[0], 1, 1, 1), attn_mask=attn_mask ) loss += loss_fn(self_out, target_out.detach()) return loss def q_loss(q_list, qc_list): loss = 0 for q, qc in zip(q_list, qc_list): loss += loss_fn(q, qc.detach()) return loss # weight = 200 def qk_loss(q_list, k_list, qc_list, kc_list): loss = 0 for q, k, qc, kc in zip(q_list, k_list, qc_list, kc_list): scale_factor = 1 / math.sqrt(q.size(-1)) self_map = torch.softmax(q @ k.transpose(-2, -1) * scale_factor, dim=-1) target_map = torch.softmax(qc @ kc.transpose(-2, -1) * scale_factor, dim=-1) loss += loss_fn(self_map, target_map.detach()) return loss # weight = 1 def qkv_loss(q_list, k_list, vc_list, c_out_list): loss = 0 for q, k, vc, target_out in zip(q_list, k_list, vc_list, c_out_list): self_out = F.scaled_dot_product_attention(q, k, vc) loss += loss_fn(self_out, target_out.detach()) return loss