chkp-talexm commited on
Commit
ecdd8e8
Β·
1 Parent(s): 3c8ed5d
Files changed (1) hide show
  1. app.py +8 -2
app.py CHANGED
@@ -293,7 +293,15 @@ if uploaded_file:
293
  # βœ… Apply Threshold to Convert Probabilities into Binary Predictions
294
  THRESHOLD = 0.7 # Adjust to control false positives
295
 
 
 
 
 
296
 
 
 
 
 
297
 
298
  predictions_df = pd.DataFrame({
299
  "CatBoost": catboost_preds,
@@ -301,8 +309,6 @@ if uploaded_file:
301
  # "RandomForest": rf_preds
302
  })
303
 
304
- catboost_preds = (catboost_probs >= THRESHOLD).astype(int)
305
- xgb_preds = (xgb_probs >= THRESHOLD).astype(int)
306
  # Apply "at least one model predicts 1" rule
307
  predictions_df["is_click_predicted"] = predictions_df.max(axis=1)
308
 
 
293
  # βœ… Apply Threshold to Convert Probabilities into Binary Predictions
294
  THRESHOLD = 0.7 # Adjust to control false positives
295
 
296
+ # βœ… Debugging: Print probability distributions before thresholding
297
+ print("πŸ” Probability Distributions Before Thresholding:")
298
+ print("CatBoost:\n", pd.Series(catboost_probs).describe())
299
+ print("XGBoost:\n", pd.Series(xgb_probs).describe())
300
 
301
+ # βœ… Apply Threshold to Convert Probabilities into Binary Predictions
302
+ THRESHOLD = 0.7 # Adjust to control false positives
303
+ catboost_preds = (catboost_probs >= THRESHOLD).astype(int)
304
+ xgb_preds = (xgb_probs >= THRESHOLD).astype(int)
305
 
306
  predictions_df = pd.DataFrame({
307
  "CatBoost": catboost_preds,
 
309
  # "RandomForest": rf_preds
310
  })
311
 
 
 
312
  # Apply "at least one model predicts 1" rule
313
  predictions_df["is_click_predicted"] = predictions_df.max(axis=1)
314