ACE-Step / pipeline_ace_step.py
Sayoyo's picture
[fix] model load dtype
3b7cae0
raw
history blame
55 kB
import random
import time
import os
import re
import torch
import torch.nn as nn
from loguru import logger
from tqdm import tqdm
import json
import math
from huggingface_hub import hf_hub_download
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps
from diffusers.utils.torch_utils import randn_tensor
from transformers import UMT5EncoderModel, AutoTokenizer
from language_segmentation import LangSegment
from music_dcae.music_dcae_pipeline import MusicDCAE
from models.ace_step_transformer import ACEStepTransformer2DModel
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
import torchaudio
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision('high')
torch.backends.cudnn.deterministic = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
def ensure_directory_exists(directory):
directory = str(directory)
if not os.path.exists(directory):
os.makedirs(directory)
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
# class ACEStepPipeline(DiffusionPipeline):
class ACEStepPipeline:
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs):
if not checkpoint_dir:
if persistent_storage_path is None:
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
else:
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
ensure_directory_exists(checkpoint_dir)
self.checkpoint_dir = checkpoint_dir
device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cpu" and torch.backends.mps.is_available():
device = torch.device("mps")
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
if device.type == "mps" and self.dtype == torch.bfloat16:
self.dtype = torch.float16
self.device = device
self.loaded = False
self.torch_compile = torch_compile
def load_checkpoint(self, checkpoint_dir=None):
device = self.device
dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8")
vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder")
ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer")
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")
files_exist = (
os.path.exists(os.path.join(dcae_model_path, "config.json")) and
os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(vocoder_model_path, "config.json")) and
os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(ace_step_model_path, "config.json")) and
os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json"))
)
if not files_exist:
logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub")
# download music dcae model
os.makedirs(dcae_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download vocoder model
os.makedirs(vocoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download ace_step transformer model
os.makedirs(ace_step_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download text encoder model
os.makedirs(text_encoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
logger.info("Models downloaded")
dcae_checkpoint_path = dcae_model_path
vocoder_checkpoint_path = vocoder_model_path
ace_step_checkpoint_path = ace_step_model_path
text_encoder_checkpoint_path = text_encoder_model_path
self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path)
self.music_dcae.to(device).eval().to(self.dtype)
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype)
self.ace_step_transformer.to(device).eval().to(self.dtype)
lang_segment = LangSegment()
lang_segment.setfilters([
'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el',
'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy',
'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg',
'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu',
'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk',
'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu'
])
self.lang_segment = lang_segment
self.lyric_tokenizer = VoiceBpeTokenizer()
text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval()
text_encoder_model = text_encoder_model.to(device).to(self.dtype)
text_encoder_model.requires_grad_(False)
self.text_encoder_model = text_encoder_model
self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path)
self.loaded = True
# compile
if self.torch_compile:
self.music_dcae = torch.compile(self.music_dcae)
self.ace_step_transformer = torch.compile(self.ace_step_transformer)
self.text_encoder_model = torch.compile(self.text_encoder_model)
def get_text_embeddings(self, texts, device, text_max_length=256):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
attention_mask = inputs["attention_mask"]
return last_hidden_states, attention_mask
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
handlers.append(handler)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
for hook in handlers:
hook.remove()
return last_hidden_states
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
return last_hidden_states
def set_seeds(self, batch_size, manual_seeds=None):
seeds = None
if manual_seeds is not None:
if isinstance(manual_seeds, str):
if "," in manual_seeds:
seeds = list(map(int, manual_seeds.split(",")))
elif manual_seeds.isdigit():
seeds = int(manual_seeds)
random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)]
actual_seeds = []
for i in range(batch_size):
seed = None
if seeds is None:
seed = torch.randint(0, 2**32, (1,)).item()
if isinstance(seeds, int):
seed = seeds
if isinstance(seeds, list):
seed = seeds[i]
random_generators[i].manual_seed(seed)
actual_seeds.append(seed)
return random_generators, actual_seeds
def get_lang(self, text):
language = "en"
try:
_ = self.lang_segment.getTexts(text)
langCounts = self.lang_segment.getCounts()
language = langCounts[0][0]
if len(langCounts) > 1 and language == "en":
language = langCounts[1][0]
except Exception as err:
language = "en"
return language
def tokenize_lyrics(self, lyrics, debug=False):
lines = lyrics.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
if structure_pattern.match(line):
token_idx = self.lyric_tokenizer.encode(line, "en")
else:
token_idx = self.lyric_tokenizer.encode(line, lang)
if debug:
toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx])
logger.info(f"debbug {line} --> {lang} --> {toks}")
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
print("tokenize error", e, "for line", line, "major_language", lang)
return lyric_token_idx
def calc_v(
self,
zt_src,
zt_tar,
t,
encoder_text_hidden_states,
text_attention_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
speaker_embds,
target_speaker_embeds,
lyric_token_ids,
lyric_mask,
target_lyric_token_ids,
target_lyric_mask,
do_classifier_free_guidance=False,
guidance_scale=1.0,
target_guidance_scale=1.0,
cfg_type="apg",
attention_mask=None,
momentum_buffer=None,
momentum_buffer_tar=None,
return_src_pred=True
):
noise_pred_src = None
if return_src_pred:
src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
timestep = t.expand(src_latent_model_input.shape[0])
# source
noise_pred_src = self.ace_step_transformer(
hidden_states=src_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embds,
lyric_token_idx=lyric_token_ids,
lyric_mask=lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2)
if cfg_type == "apg":
noise_pred_src = apg_forward(
pred_cond=noise_pred_with_cond_src,
pred_uncond=noise_pred_uncond_src,
guidance_scale=guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred_src = cfg_forward(
cond_output=noise_pred_with_cond_src,
uncond_output=noise_pred_uncond_src,
cfg_strength=guidance_scale,
)
tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
timestep = t.expand(tar_latent_model_input.shape[0])
# target
noise_pred_tar = self.ace_step_transformer(
hidden_states=tar_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=target_encoder_text_hidden_states,
text_attention_mask=target_text_attention_mask,
speaker_embeds=target_speaker_embeds,
lyric_token_idx=target_lyric_token_ids,
lyric_mask=target_lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2)
if cfg_type == "apg":
noise_pred_tar = apg_forward(
pred_cond=noise_pred_with_cond_tar,
pred_uncond=noise_pred_uncond_tar,
guidance_scale=target_guidance_scale,
momentum_buffer=momentum_buffer_tar,
)
elif cfg_type == "cfg":
noise_pred_tar = cfg_forward(
cond_output=noise_pred_with_cond_tar,
uncond_output=noise_pred_uncond_tar,
cfg_strength=target_guidance_scale,
)
return noise_pred_src, noise_pred_tar
@torch.no_grad()
def flowedit_diffusion_process(
self,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
target_speaker_embeds,
target_lyric_token_ids,
target_lyric_mask,
src_latents,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
n_min=0,
n_max=1.0,
n_avg=1,
):
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
target_guidance_scale = guidance_scale
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
T_steps = infer_steps
frame_length = src_latents.shape[-1]
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
if do_classifier_free_guidance:
attention_mask = torch.cat([attention_mask] * 2, dim=0)
encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0)
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0)
target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0)
speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0)
target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0)
lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0)
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0)
target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0)
momentum_buffer = MomentumBuffer()
momentum_buffer_tar = MomentumBuffer()
x_src = src_latents
zt_edit = x_src.clone()
xt_tar = None
n_min = int(infer_steps * n_min)
n_max = int(infer_steps * n_max)
logger.info("flowedit start from {} to {}".format(n_min, n_max))
for i, t in tqdm(enumerate(timesteps), total=T_steps):
if i < n_min:
continue
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
if i < n_max:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src)
for k in range(n_avg):
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
zt_tar = zt_edit + zt_src - x_src
Vt_src, Vt_tar = self.calc_v(
zt_src=zt_src,
zt_tar=zt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer=momentum_buffer
)
V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling for last n_min steps
if i == n_max:
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
scheduler._init_step_index(t)
sigma = scheduler.sigmas[scheduler.step_index]
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
xt_tar = zt_edit + xt_src - x_src
_, Vt_tar = self.calc_v(
zt_src=None,
zt_tar=xt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer_tar=momentum_buffer_tar,
return_src_pred=False,
)
dtype = Vt_tar.dtype
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
prev_sample = prev_sample.to(dtype)
xt_tar = prev_sample
target_latents = zt_edit if xt_tar is None else xt_tar
return target_latents
@torch.no_grad()
def text2music_diffusion_process(
self,
duration,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
omega_scale=10.0,
scheduler_type="euler",
cfg_type="apg",
zero_steps=1,
use_zero_init=True,
guidance_interval=0.5,
guidance_interval_decay=1.0,
min_guidance_scale=3.0,
oss_steps=[],
encoder_text_hidden_states_null=None,
use_erg_lyric=False,
use_erg_diffusion=False,
retake_random_generators=None,
retake_variance=0.5,
add_retake_noise=False,
guidance_scale_text=0.0,
guidance_scale_lyric=0.0,
repaint_start=0,
repaint_end=0,
src_latents=None,
):
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
do_double_condition_guidance = False
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
do_double_condition_guidance = True
logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric))
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
if scheduler_type == "euler":
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
elif scheduler_type == "heun":
scheduler = FlowMatchHeunDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
frame_length = int(duration * 44100 / 512 / 8)
if src_latents is not None:
frame_length = src_latents.shape[-1]
if len(oss_steps) > 0:
infer_steps = max(oss_steps)
scheduler.set_timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
for idx in range(len(oss_steps)):
new_timesteps[idx] = timesteps[oss_steps[idx]-1]
num_inference_steps = len(oss_steps)
sigmas = (new_timesteps / 1000).float().cpu().numpy()
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas)
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
else:
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
is_repaint = False
is_extend = False
if add_retake_noise:
n_min = int(infer_steps * (1 - retake_variance))
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
x0 = src_latents
# retake
is_repaint = (repaint_end_frame - repaint_start_frame != frame_length)
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
if is_extend:
is_repaint = True
# TODO: train a mask aware repainting controlnet
# to make sure mean = 0, std = 1
if not is_repaint:
target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
elif not is_extend:
# if repaint_end_frame
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents)
zt_edit = x0.clone()
z0 = repaint_noise
elif is_extend:
to_right_pad_gt_latents = None
to_left_pad_gt_latents = None
gt_latents = src_latents
src_latents_length = gt_latents.shape[-1]
max_infer_fame_length = int(240 * 44100 / 512 / 8)
left_pad_frame_length = 0
right_pad_frame_length = 0
right_trim_length = 0
left_trim_length = 0
if repaint_start_frame < 0:
left_pad_frame_length = abs(repaint_start_frame)
frame_length = left_pad_frame_length + gt_latents.shape[-1]
extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0)
if frame_length > max_infer_fame_length:
right_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length]
to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:]
frame_length = max_infer_fame_length
repaint_start_frame = 0
gt_latents = extend_gt_latents
if repaint_end_frame > src_latents_length:
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
frame_length = gt_latents.shape[-1] + right_pad_frame_length
extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0)
if frame_length > max_infer_fame_length:
left_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:]
to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length]
frame_length = max_infer_fame_length
repaint_end_frame = frame_length
gt_latents = extend_gt_latents
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
if left_pad_frame_length > 0:
repaint_mask[:,:,:,:left_pad_frame_length] = 1.0
if right_pad_frame_length > 0:
repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0
x0 = gt_latents
padd_list = []
if left_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length])
if right_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
target_latents = torch.cat(padd_list, dim=-1)
assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}"
zt_edit = x0.clone()
z0 = target_latents
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
# guidance interval
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}")
momentum_buffer = MomentumBuffer()
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
handlers.append(handler)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
for hook in handlers:
hook.remove()
return encoder_hidden_states
# P(speaker, text, lyric)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
)
if use_erg_lyric:
# P(null_speaker, text_weaker, lyric_weaker)
encoder_hidden_states_null = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states),
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
else:
# P(null_speaker, null_text, null_lyric)
encoder_hidden_states_null, _ = self.ace_step_transformer.encode(
torch.zeros_like(encoder_text_hidden_states),
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
encoder_hidden_states_no_lyric = None
if do_double_condition_guidance:
# P(null_speaker, text, lyric_weaker)
if use_erg_lyric:
encoder_hidden_states_no_lyric = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states,
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
# P(null_speaker, text, no_lyric)
else:
encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
handlers.append(handler)
handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook)
handlers.append(handler)
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
for hook in handlers:
hook.remove()
return sample
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
if is_repaint:
if i < n_min:
continue
elif i == n_min:
t_i = t / 1000
zt_src = (1 - t_i) * x0 + (t_i) * z0
target_latents = zt_edit + zt_src - x0
logger.info(f"repaint start from {n_min} add {t_i} level of noise")
# expand the latents if we are doing classifier free guidance
latents = target_latents
is_in_guidance_interval = start_idx <= i < end_idx
if is_in_guidance_interval and do_classifier_free_guidance:
# compute current guidance scale
if guidance_interval_decay > 0:
# Linearly interpolate to calculate the current guidance scale
progress = (i - start_idx) / (end_idx - start_idx - 1) # 归一化到[0,1]
current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay
else:
current_guidance_scale = guidance_scale
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
output_length = latent_model_input.shape[-1]
# P(x|speaker, text, lyric)
noise_pred_with_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
noise_pred_with_only_text_cond = None
if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None:
noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_no_lyric,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if use_erg_diffusion:
noise_pred_uncond = forward_diffusion_with_temperature(
self,
hidden_states=latent_model_input,
timestep=timestep,
inputs={
"encoder_hidden_states": encoder_hidden_states_null,
"encoder_hidden_mask": encoder_hidden_mask,
"output_length": output_length,
"attention_mask": attention_mask,
},
)
else:
noise_pred_uncond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_null,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if do_double_condition_guidance and noise_pred_with_only_text_cond is not None:
noise_pred = cfg_double_condition_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
only_text_cond_output=noise_pred_with_only_text_cond,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
)
elif cfg_type == "apg":
noise_pred = apg_forward(
pred_cond=noise_pred_with_cond,
pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred = cfg_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
cfg_strength=current_guidance_scale,
)
elif cfg_type == "cfg_star":
noise_pred = cfg_zero_star(
noise_pred_with_cond=noise_pred_with_cond,
noise_pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
i=i,
zero_steps=zero_steps,
use_zero_init=use_zero_init
)
else:
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
noise_pred = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=latent_model_input.shape[-1],
timestep=timestep,
).sample
if is_repaint and i >= n_min:
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
dtype = noise_pred.dtype
target_latents = target_latents.to(torch.float32)
prev_sample = target_latents + (t_im1 - t_i) * noise_pred
prev_sample = prev_sample.to(dtype)
target_latents = prev_sample
zt_src = (1 - t_im1) * x0 + (t_im1) * z0
target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src)
else:
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]
if is_extend:
if to_right_pad_gt_latents is not None:
target_latents = torch.cate([target_latents, to_right_pad_gt_latents], dim=-1)
if to_left_pad_gt_latents is not None:
target_latents = torch.cate([to_right_pad_gt_latents, target_latents], dim=0)
return target_latents
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="flac"):
output_audio_paths = []
bs = latents.shape[0]
audio_lengths = [target_wav_duration_second * sample_rate] * bs
pred_latents = latents
with torch.no_grad():
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
for i in tqdm(range(bs)):
output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate)
output_audio_paths.append(output_audio_path)
return output_audio_paths
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="flac"):
if save_path is None:
logger.warning("save_path is None, using default path ./outputs/")
base_path = f"./outputs"
ensure_directory_exists(base_path)
else:
base_path = save_path
ensure_directory_exists(base_path)
output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}"
target_wav = target_wav.float()
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format)
return output_path_flac
def infer_latents(self, input_audio_path):
if input_audio_path is None:
return None
input_audio, sr = self.music_dcae.load_audio(input_audio_path)
input_audio = input_audio.unsqueeze(0)
device, dtype = self.device, self.dtype
input_audio = input_audio.to(device=device, dtype=dtype)
latents, _ = self.music_dcae.encode(input_audio, sr=sr)
return latents
def __call__(
self,
audio_duration: float = 60.0,
prompt: str = None,
lyrics: str = None,
infer_step: int = 60,
guidance_scale: float = 15.0,
scheduler_type: str = "euler",
cfg_type: str = "apg",
omega_scale: int = 10.0,
manual_seeds: list = None,
guidance_interval: float = 0.5,
guidance_interval_decay: float = 0.,
min_guidance_scale: float = 3.0,
use_erg_tag: bool = True,
use_erg_lyric: bool = True,
use_erg_diffusion: bool = True,
oss_steps: str = None,
guidance_scale_text: float = 0.0,
guidance_scale_lyric: float = 0.0,
retake_seeds: list = None,
retake_variance: float = 0.5,
task: str = "text2music",
repaint_start: int = 0,
repaint_end: int = 0,
src_audio_path: str = None,
edit_target_prompt: str = None,
edit_target_lyrics: str = None,
edit_n_min: float = 0.0,
edit_n_max: float = 1.0,
edit_n_avg: int = 1,
save_path: str = None,
format: str = "flac",
batch_size: int = 1,
debug: bool = False,
):
start_time = time.time()
if not self.loaded:
logger.warning("Checkpoint not loaded, loading checkpoint...")
self.load_checkpoint(self.checkpoint_dir)
load_model_cost = time.time() - start_time
logger.info(f"Model loaded in {load_model_cost:.2f} seconds.")
start_time = time.time()
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds)
if isinstance(oss_steps, str) and len(oss_steps) > 0:
oss_steps = list(map(int, oss_steps.split(",")))
else:
oss_steps = []
texts = [prompt]
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
text_attention_mask = text_attention_mask.repeat(batch_size, 1)
encoder_text_hidden_states_null = None
if use_erg_tag:
encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device)
encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1)
# not support for released checkpoint
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)
# 6 lyric
lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(lyrics) > 0:
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
lyric_mask = [1] * len(lyric_token_idx)
lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
if audio_duration <= 0:
audio_duration = random.uniform(30.0, 240.0)
logger.info(f"random audio duration: {audio_duration}")
end_time = time.time()
preprocess_time_cost = end_time - start_time
start_time = end_time
add_retake_noise = task in ("retake", "repaint", "extend")
# retake equal to repaint
if task == "retake":
repaint_start = 0
repaint_end = audio_duration
src_latents = None
if src_audio_path is not None:
assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task"
assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist"
src_latents = self.infer_latents(src_audio_path)
if task == "edit":
texts = [edit_target_prompt]
target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device)
target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1)
target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(edit_target_lyrics) > 0:
target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True)
target_lyric_mask = [1] * len(target_lyric_token_idx)
target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_speaker_embeds = speaker_embeds.clone()
target_latents = self.flowedit_diffusion_process(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
target_speaker_embeds=target_speaker_embeds,
target_lyric_token_ids=target_lyric_token_idx,
target_lyric_mask=target_lyric_mask,
src_latents=src_latents,
random_generators=retake_random_generators, # more diversity
infer_steps=infer_step,
guidance_scale=guidance_scale,
n_min=edit_n_min,
n_max=edit_n_max,
n_avg=edit_n_avg,
)
else:
target_latents = self.text2music_diffusion_process(
duration=audio_duration,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
guidance_scale=guidance_scale,
omega_scale=omega_scale,
infer_steps=infer_step,
random_generators=random_generators,
scheduler_type=scheduler_type,
cfg_type=cfg_type,
guidance_interval=guidance_interval,
guidance_interval_decay=guidance_interval_decay,
min_guidance_scale=min_guidance_scale,
oss_steps=oss_steps,
encoder_text_hidden_states_null=encoder_text_hidden_states_null,
use_erg_lyric=use_erg_lyric,
use_erg_diffusion=use_erg_diffusion,
retake_random_generators=retake_random_generators,
retake_variance=retake_variance,
add_retake_noise=add_retake_noise,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
repaint_start=repaint_start,
repaint_end=repaint_end,
src_latents=src_latents,
)
end_time = time.time()
diffusion_time_cost = end_time - start_time
start_time = end_time
output_paths = self.latents2audio(
latents=target_latents,
target_wav_duration_second=audio_duration,
save_path=save_path,
format=format,
)
end_time = time.time()
latent2audio_time_cost = end_time - start_time
timecosts = {
"preprocess": preprocess_time_cost,
"diffusion": diffusion_time_cost,
"latent2audio": latent2audio_time_cost,
}
input_params_json = {
"task": task,
"prompt": prompt if task != "edit" else edit_target_prompt,
"lyrics": lyrics if task != "edit" else edit_target_lyrics,
"audio_duration": audio_duration,
"infer_step": infer_step,
"guidance_scale": guidance_scale,
"scheduler_type": scheduler_type,
"cfg_type": cfg_type,
"omega_scale": omega_scale,
"guidance_interval": guidance_interval,
"guidance_interval_decay": guidance_interval_decay,
"min_guidance_scale": min_guidance_scale,
"use_erg_tag": use_erg_tag,
"use_erg_lyric": use_erg_lyric,
"use_erg_diffusion": use_erg_diffusion,
"oss_steps": oss_steps,
"timecosts": timecosts,
"actual_seeds": actual_seeds,
"retake_seeds": actual_retake_seeds,
"retake_variance": retake_variance,
"guidance_scale_text": guidance_scale_text,
"guidance_scale_lyric": guidance_scale_lyric,
"repaint_start": repaint_start,
"repaint_end": repaint_end,
"edit_n_min": edit_n_min,
"edit_n_max": edit_n_max,
"edit_n_avg": edit_n_avg,
"src_audio_path": src_audio_path,
"edit_target_prompt": edit_target_prompt,
"edit_target_lyrics": edit_target_lyrics,
}
# save input_params_json
for output_audio_path in output_paths:
input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json")
input_params_json["audio_path"] = output_audio_path
with open(input_params_json_save_path, "w", encoding="utf-8") as f:
json.dump(input_params_json, f, indent=4, ensure_ascii=False)
return output_paths + [input_params_json]