ACE-Step / pipeline_ace_step.py
xushengyuan's picture
change audio format from flac to 320kbps mp3 (#3)
1005670 verified
import random
import time
import os
import re
import torch
import torch.nn as nn
from loguru import logger
from tqdm import tqdm
import json
import math
from huggingface_hub import hf_hub_download
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps
from diffusers.utils.torch_utils import randn_tensor
from transformers import UMT5EncoderModel, AutoTokenizer
from language_segmentation import LangSegment
from music_dcae.music_dcae_pipeline import MusicDCAE
from models.ace_step_transformer import ACEStepTransformer2DModel
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward
import torchaudio
import torio
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision('high')
torch.backends.cudnn.deterministic = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
def ensure_directory_exists(directory):
directory = str(directory)
if not os.path.exists(directory):
os.makedirs(directory)
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B"
# class ACEStepPipeline(DiffusionPipeline):
class ACEStepPipeline:
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs):
if not checkpoint_dir:
if persistent_storage_path is None:
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints")
else:
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints")
ensure_directory_exists(checkpoint_dir)
self.checkpoint_dir = checkpoint_dir
device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cpu" and torch.backends.mps.is_available():
device = torch.device("mps")
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
if device.type == "mps" and self.dtype == torch.bfloat16:
self.dtype = torch.float16
self.device = device
self.loaded = False
self.torch_compile = torch_compile
def load_checkpoint(self, checkpoint_dir=None):
device = self.device
dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8")
vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder")
ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer")
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base")
files_exist = (
os.path.exists(os.path.join(dcae_model_path, "config.json")) and
os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(vocoder_model_path, "config.json")) and
os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(ace_step_model_path, "config.json")) and
os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and
os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json"))
)
if not files_exist:
logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub")
# download music dcae model
os.makedirs(dcae_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download vocoder model
os.makedirs(vocoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download ace_step transformer model
os.makedirs(ace_step_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer",
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
# download text encoder model
os.makedirs(text_encoder_model_path, exist_ok=True)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base",
filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False)
logger.info("Models downloaded")
dcae_checkpoint_path = dcae_model_path
vocoder_checkpoint_path = vocoder_model_path
ace_step_checkpoint_path = ace_step_model_path
text_encoder_checkpoint_path = text_encoder_model_path
self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path)
self.music_dcae.to(device).eval().to(self.dtype)
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype)
self.ace_step_transformer.to(device).eval().to(self.dtype)
lang_segment = LangSegment()
lang_segment.setfilters([
'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el',
'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy',
'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg',
'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu',
'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk',
'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu'
])
self.lang_segment = lang_segment
self.lyric_tokenizer = VoiceBpeTokenizer()
text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval()
text_encoder_model = text_encoder_model.to(device).to(self.dtype)
text_encoder_model.requires_grad_(False)
self.text_encoder_model = text_encoder_model
self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path)
self.loaded = True
# compile
if self.torch_compile:
self.music_dcae = torch.compile(self.music_dcae)
self.ace_step_transformer = torch.compile(self.ace_step_transformer)
self.text_encoder_model = torch.compile(self.text_encoder_model)
def get_text_embeddings(self, texts, device, text_max_length=256):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
attention_mask = inputs["attention_mask"]
return last_hidden_states, attention_mask
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
inputs = {key: value.to(device) for key, value in inputs.items()}
if self.text_encoder_model.device != device:
self.text_encoder_model.to(device)
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
handlers.append(handler)
with torch.no_grad():
outputs = self.text_encoder_model(**inputs)
last_hidden_states = outputs.last_hidden_state
for hook in handlers:
hook.remove()
return last_hidden_states
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
return last_hidden_states
def set_seeds(self, batch_size, manual_seeds=None):
seeds = None
if manual_seeds is not None:
if isinstance(manual_seeds, str):
if "," in manual_seeds:
seeds = list(map(int, manual_seeds.split(",")))
elif manual_seeds.isdigit():
seeds = int(manual_seeds)
random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)]
actual_seeds = []
for i in range(batch_size):
seed = None
if seeds is None:
seed = torch.randint(0, 2**32, (1,)).item()
if isinstance(seeds, int):
seed = seeds
if isinstance(seeds, list):
seed = seeds[i]
random_generators[i].manual_seed(seed)
actual_seeds.append(seed)
return random_generators, actual_seeds
def get_lang(self, text):
language = "en"
try:
_ = self.lang_segment.getTexts(text)
langCounts = self.lang_segment.getCounts()
language = langCounts[0][0]
if len(langCounts) > 1 and language == "en":
language = langCounts[1][0]
except Exception as err:
language = "en"
return language
def tokenize_lyrics(self, lyrics, debug=False):
lines = lyrics.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
if structure_pattern.match(line):
token_idx = self.lyric_tokenizer.encode(line, "en")
else:
token_idx = self.lyric_tokenizer.encode(line, lang)
if debug:
toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx])
logger.info(f"debbug {line} --> {lang} --> {toks}")
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
print("tokenize error", e, "for line", line, "major_language", lang)
return lyric_token_idx
def calc_v(
self,
zt_src,
zt_tar,
t,
encoder_text_hidden_states,
text_attention_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
speaker_embds,
target_speaker_embeds,
lyric_token_ids,
lyric_mask,
target_lyric_token_ids,
target_lyric_mask,
do_classifier_free_guidance=False,
guidance_scale=1.0,
target_guidance_scale=1.0,
cfg_type="apg",
attention_mask=None,
momentum_buffer=None,
momentum_buffer_tar=None,
return_src_pred=True
):
noise_pred_src = None
if return_src_pred:
src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src
timestep = t.expand(src_latent_model_input.shape[0])
# source
noise_pred_src = self.ace_step_transformer(
hidden_states=src_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embds,
lyric_token_idx=lyric_token_ids,
lyric_mask=lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2)
if cfg_type == "apg":
noise_pred_src = apg_forward(
pred_cond=noise_pred_with_cond_src,
pred_uncond=noise_pred_uncond_src,
guidance_scale=guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred_src = cfg_forward(
cond_output=noise_pred_with_cond_src,
uncond_output=noise_pred_uncond_src,
cfg_strength=guidance_scale,
)
tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar
timestep = t.expand(tar_latent_model_input.shape[0])
# target
noise_pred_tar = self.ace_step_transformer(
hidden_states=tar_latent_model_input,
attention_mask=attention_mask,
encoder_text_hidden_states=target_encoder_text_hidden_states,
text_attention_mask=target_text_attention_mask,
speaker_embeds=target_speaker_embeds,
lyric_token_idx=target_lyric_token_ids,
lyric_mask=target_lyric_mask,
timestep=timestep,
).sample
if do_classifier_free_guidance:
noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2)
if cfg_type == "apg":
noise_pred_tar = apg_forward(
pred_cond=noise_pred_with_cond_tar,
pred_uncond=noise_pred_uncond_tar,
guidance_scale=target_guidance_scale,
momentum_buffer=momentum_buffer_tar,
)
elif cfg_type == "cfg":
noise_pred_tar = cfg_forward(
cond_output=noise_pred_with_cond_tar,
uncond_output=noise_pred_uncond_tar,
cfg_strength=target_guidance_scale,
)
return noise_pred_src, noise_pred_tar
@torch.no_grad()
def flowedit_diffusion_process(
self,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
target_encoder_text_hidden_states,
target_text_attention_mask,
target_speaker_embeds,
target_lyric_token_ids,
target_lyric_mask,
src_latents,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
n_min=0,
n_max=1.0,
n_avg=1,
):
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
target_guidance_scale = guidance_scale
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
T_steps = infer_steps
frame_length = src_latents.shape[-1]
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
if do_classifier_free_guidance:
attention_mask = torch.cat([attention_mask] * 2, dim=0)
encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0)
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0)
target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0)
target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0)
speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0)
target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0)
lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0)
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0)
target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0)
target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0)
momentum_buffer = MomentumBuffer()
momentum_buffer_tar = MomentumBuffer()
x_src = src_latents
zt_edit = x_src.clone()
xt_tar = None
n_min = int(infer_steps * n_min)
n_max = int(infer_steps * n_max)
logger.info("flowedit start from {} to {}".format(n_min, n_max))
for i, t in tqdm(enumerate(timesteps), total=T_steps):
if i < n_min:
continue
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
if i < n_max:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src)
for k in range(n_avg):
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise
zt_tar = zt_edit + zt_src - x_src
Vt_src, Vt_tar = self.calc_v(
zt_src=zt_src,
zt_tar=zt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer=momentum_buffer
)
V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling for last n_min steps
if i == n_max:
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype)
scheduler._init_step_index(t)
sigma = scheduler.sigmas[scheduler.step_index]
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src
xt_tar = zt_edit + xt_src - x_src
_, Vt_tar = self.calc_v(
zt_src=None,
zt_tar=xt_tar,
t=t,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
speaker_embds=speaker_embds,
target_speaker_embeds=target_speaker_embeds,
lyric_token_ids=lyric_token_ids,
lyric_mask=lyric_mask,
target_lyric_token_ids=target_lyric_token_ids,
target_lyric_mask=target_lyric_mask,
do_classifier_free_guidance=do_classifier_free_guidance,
guidance_scale=guidance_scale,
target_guidance_scale=target_guidance_scale,
attention_mask=attention_mask,
momentum_buffer_tar=momentum_buffer_tar,
return_src_pred=False,
)
dtype = Vt_tar.dtype
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar
prev_sample = prev_sample.to(dtype)
xt_tar = prev_sample
target_latents = zt_edit if xt_tar is None else xt_tar
return target_latents
@torch.no_grad()
def text2music_diffusion_process(
self,
duration,
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
random_generators=None,
infer_steps=60,
guidance_scale=15.0,
omega_scale=10.0,
scheduler_type="euler",
cfg_type="apg",
zero_steps=1,
use_zero_init=True,
guidance_interval=0.5,
guidance_interval_decay=1.0,
min_guidance_scale=3.0,
oss_steps=[],
encoder_text_hidden_states_null=None,
use_erg_lyric=False,
use_erg_diffusion=False,
retake_random_generators=None,
retake_variance=0.5,
add_retake_noise=False,
guidance_scale_text=0.0,
guidance_scale_lyric=0.0,
repaint_start=0,
repaint_end=0,
src_latents=None,
):
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale))
do_classifier_free_guidance = True
if guidance_scale == 0.0 or guidance_scale == 1.0:
do_classifier_free_guidance = False
do_double_condition_guidance = False
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0:
do_double_condition_guidance = True
logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric))
device = encoder_text_hidden_states.device
dtype = encoder_text_hidden_states.dtype
bsz = encoder_text_hidden_states.shape[0]
if scheduler_type == "euler":
scheduler = FlowMatchEulerDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
elif scheduler_type == "heun":
scheduler = FlowMatchHeunDiscreteScheduler(
num_train_timesteps=1000,
shift=3.0,
)
frame_length = int(duration * 44100 / 512 / 8)
if src_latents is not None:
frame_length = src_latents.shape[-1]
if len(oss_steps) > 0:
infer_steps = max(oss_steps)
scheduler.set_timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device)
for idx in range(len(oss_steps)):
new_timesteps[idx] = timesteps[oss_steps[idx]-1]
num_inference_steps = len(oss_steps)
sigmas = (new_timesteps / 1000).float().cpu().numpy()
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas)
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}")
else:
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None)
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype)
is_repaint = False
is_extend = False
if add_retake_noise:
n_min = int(infer_steps * (1 - retake_variance))
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype)
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype)
repaint_start_frame = int(repaint_start * 44100 / 512 / 8)
repaint_end_frame = int(repaint_end * 44100 / 512 / 8)
x0 = src_latents
# retake
is_repaint = (repaint_end_frame - repaint_start_frame != frame_length)
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length)
if is_extend:
is_repaint = True
# TODO: train a mask aware repainting controlnet
# to make sure mean = 0, std = 1
if not is_repaint:
target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
elif not is_extend:
# if repaint_end_frame
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0
repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents
repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents)
zt_edit = x0.clone()
z0 = repaint_noise
elif is_extend:
to_right_pad_gt_latents = None
to_left_pad_gt_latents = None
gt_latents = src_latents
src_latents_length = gt_latents.shape[-1]
max_infer_fame_length = int(240 * 44100 / 512 / 8)
left_pad_frame_length = 0
right_pad_frame_length = 0
right_trim_length = 0
left_trim_length = 0
if repaint_start_frame < 0:
left_pad_frame_length = abs(repaint_start_frame)
frame_length = left_pad_frame_length + gt_latents.shape[-1]
extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0)
if frame_length > max_infer_fame_length:
right_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length]
to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:]
frame_length = max_infer_fame_length
repaint_start_frame = 0
gt_latents = extend_gt_latents
if repaint_end_frame > src_latents_length:
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1]
frame_length = gt_latents.shape[-1] + right_pad_frame_length
extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0)
if frame_length > max_infer_fame_length:
left_trim_length = frame_length - max_infer_fame_length
extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:]
to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length]
frame_length = max_infer_fame_length
repaint_end_frame = frame_length
gt_latents = extend_gt_latents
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype)
if left_pad_frame_length > 0:
repaint_mask[:,:,:,:left_pad_frame_length] = 1.0
if right_pad_frame_length > 0:
repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0
x0 = gt_latents
padd_list = []
if left_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length])
padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length])
if right_pad_frame_length > 0:
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:])
target_latents = torch.cat(padd_list, dim=-1)
assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}"
zt_edit = x0.clone()
z0 = target_latents
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype)
# guidance interval
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2))
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5))
logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}")
momentum_buffer = MomentumBuffer()
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook)
handlers.append(handler)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs)
for hook in handlers:
hook.remove()
return encoder_hidden_states
# P(speaker, text, lyric)
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
speaker_embds,
lyric_token_ids,
lyric_mask,
)
if use_erg_lyric:
# P(null_speaker, text_weaker, lyric_weaker)
encoder_hidden_states_null = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states),
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
else:
# P(null_speaker, null_text, null_lyric)
encoder_hidden_states_null, _ = self.ace_step_transformer.encode(
torch.zeros_like(encoder_text_hidden_states),
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
encoder_hidden_states_no_lyric = None
if do_double_condition_guidance:
# P(null_speaker, text, lyric_weaker)
if use_erg_lyric:
encoder_hidden_states_no_lyric = forward_encoder_with_temperature(
self,
inputs={
"encoder_text_hidden_states": encoder_text_hidden_states,
"text_attention_mask": text_attention_mask,
"speaker_embeds": torch.zeros_like(speaker_embds),
"lyric_token_idx": lyric_token_ids,
"lyric_mask": lyric_mask,
}
)
# P(null_speaker, text, no_lyric)
else:
encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode(
encoder_text_hidden_states,
text_attention_mask,
torch.zeros_like(speaker_embds),
torch.zeros_like(lyric_token_ids),
lyric_mask,
)
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20):
handlers = []
def hook(module, input, output):
output[:] *= tau
return output
for i in range(l_min, l_max):
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook)
handlers.append(handler)
handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook)
handlers.append(handler)
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample
for hook in handlers:
hook.remove()
return sample
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps):
if is_repaint:
if i < n_min:
continue
elif i == n_min:
t_i = t / 1000
zt_src = (1 - t_i) * x0 + (t_i) * z0
target_latents = zt_edit + zt_src - x0
logger.info(f"repaint start from {n_min} add {t_i} level of noise")
# expand the latents if we are doing classifier free guidance
latents = target_latents
is_in_guidance_interval = start_idx <= i < end_idx
if is_in_guidance_interval and do_classifier_free_guidance:
# compute current guidance scale
if guidance_interval_decay > 0:
# Linearly interpolate to calculate the current guidance scale
progress = (i - start_idx) / (end_idx - start_idx - 1) # 归一化到[0,1]
current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay
else:
current_guidance_scale = guidance_scale
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
output_length = latent_model_input.shape[-1]
# P(x|speaker, text, lyric)
noise_pred_with_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
noise_pred_with_only_text_cond = None
if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None:
noise_pred_with_only_text_cond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_no_lyric,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if use_erg_diffusion:
noise_pred_uncond = forward_diffusion_with_temperature(
self,
hidden_states=latent_model_input,
timestep=timestep,
inputs={
"encoder_hidden_states": encoder_hidden_states_null,
"encoder_hidden_mask": encoder_hidden_mask,
"output_length": output_length,
"attention_mask": attention_mask,
},
)
else:
noise_pred_uncond = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states_null,
encoder_hidden_mask=encoder_hidden_mask,
output_length=output_length,
timestep=timestep,
).sample
if do_double_condition_guidance and noise_pred_with_only_text_cond is not None:
noise_pred = cfg_double_condition_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
only_text_cond_output=noise_pred_with_only_text_cond,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
)
elif cfg_type == "apg":
noise_pred = apg_forward(
pred_cond=noise_pred_with_cond,
pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
momentum_buffer=momentum_buffer,
)
elif cfg_type == "cfg":
noise_pred = cfg_forward(
cond_output=noise_pred_with_cond,
uncond_output=noise_pred_uncond,
cfg_strength=current_guidance_scale,
)
elif cfg_type == "cfg_star":
noise_pred = cfg_zero_star(
noise_pred_with_cond=noise_pred_with_cond,
noise_pred_uncond=noise_pred_uncond,
guidance_scale=current_guidance_scale,
i=i,
zero_steps=zero_steps,
use_zero_init=use_zero_init
)
else:
latent_model_input = latents
timestep = t.expand(latent_model_input.shape[0])
noise_pred = self.ace_step_transformer.decode(
hidden_states=latent_model_input,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
output_length=latent_model_input.shape[-1],
timestep=timestep,
).sample
if is_repaint and i >= n_min:
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
dtype = noise_pred.dtype
target_latents = target_latents.to(torch.float32)
prev_sample = target_latents + (t_im1 - t_i) * noise_pred
prev_sample = prev_sample.to(dtype)
target_latents = prev_sample
zt_src = (1 - t_im1) * x0 + (t_im1) * z0
target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src)
else:
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0]
if is_extend:
if to_right_pad_gt_latents is not None:
target_latents = torch.cate([target_latents, to_right_pad_gt_latents], dim=-1)
if to_left_pad_gt_latents is not None:
target_latents = torch.cate([to_right_pad_gt_latents, target_latents], dim=0)
return target_latents
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="mp3"):
output_audio_paths = []
bs = latents.shape[0]
audio_lengths = [target_wav_duration_second * sample_rate] * bs
pred_latents = latents
with torch.no_grad():
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate)
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs]
for i in tqdm(range(bs)):
output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate)
output_audio_paths.append(output_audio_path)
return output_audio_paths
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"):
if save_path is None:
logger.warning("save_path is None, using default path ./outputs/")
base_path = f"./outputs"
ensure_directory_exists(base_path)
else:
base_path = save_path
ensure_directory_exists(base_path)
output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}"
target_wav = target_wav.float()
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format, compression=torio.io.CodecConfig(bit_rate=320000))
return output_path_flac
def infer_latents(self, input_audio_path):
if input_audio_path is None:
return None
input_audio, sr = self.music_dcae.load_audio(input_audio_path)
input_audio = input_audio.unsqueeze(0)
device, dtype = self.device, self.dtype
input_audio = input_audio.to(device=device, dtype=dtype)
latents, _ = self.music_dcae.encode(input_audio, sr=sr)
return latents
def __call__(
self,
audio_duration: float = 60.0,
prompt: str = None,
lyrics: str = None,
infer_step: int = 60,
guidance_scale: float = 15.0,
scheduler_type: str = "euler",
cfg_type: str = "apg",
omega_scale: int = 10.0,
manual_seeds: list = None,
guidance_interval: float = 0.5,
guidance_interval_decay: float = 0.,
min_guidance_scale: float = 3.0,
use_erg_tag: bool = True,
use_erg_lyric: bool = True,
use_erg_diffusion: bool = True,
oss_steps: str = None,
guidance_scale_text: float = 0.0,
guidance_scale_lyric: float = 0.0,
retake_seeds: list = None,
retake_variance: float = 0.5,
task: str = "text2music",
repaint_start: int = 0,
repaint_end: int = 0,
src_audio_path: str = None,
edit_target_prompt: str = None,
edit_target_lyrics: str = None,
edit_n_min: float = 0.0,
edit_n_max: float = 1.0,
edit_n_avg: int = 1,
save_path: str = None,
format: str = "mp3",
batch_size: int = 1,
debug: bool = False,
):
start_time = time.time()
if not self.loaded:
logger.warning("Checkpoint not loaded, loading checkpoint...")
self.load_checkpoint(self.checkpoint_dir)
load_model_cost = time.time() - start_time
logger.info(f"Model loaded in {load_model_cost:.2f} seconds.")
start_time = time.time()
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds)
retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds)
if isinstance(oss_steps, str) and len(oss_steps) > 0:
oss_steps = list(map(int, oss_steps.split(",")))
else:
oss_steps = []
texts = [prompt]
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device)
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1)
text_attention_mask = text_attention_mask.repeat(batch_size, 1)
encoder_text_hidden_states_null = None
if use_erg_tag:
encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device)
encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1)
# not support for released checkpoint
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype)
# 6 lyric
lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(lyrics) > 0:
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug)
lyric_mask = [1] * len(lyric_token_idx)
lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
if audio_duration <= 0:
audio_duration = random.uniform(30.0, 240.0)
logger.info(f"random audio duration: {audio_duration}")
end_time = time.time()
preprocess_time_cost = end_time - start_time
start_time = end_time
add_retake_noise = task in ("retake", "repaint", "extend")
# retake equal to repaint
if task == "retake":
repaint_start = 0
repaint_end = audio_duration
src_latents = None
if src_audio_path is not None:
assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task"
assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist"
src_latents = self.infer_latents(src_audio_path)
if task == "edit":
texts = [edit_target_prompt]
target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device)
target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1)
target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1)
target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long()
if len(edit_target_lyrics) > 0:
target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True)
target_lyric_mask = [1] * len(target_lyric_token_idx)
target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1)
target_speaker_embeds = speaker_embeds.clone()
target_latents = self.flowedit_diffusion_process(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
target_encoder_text_hidden_states=target_encoder_text_hidden_states,
target_text_attention_mask=target_text_attention_mask,
target_speaker_embeds=target_speaker_embeds,
target_lyric_token_ids=target_lyric_token_idx,
target_lyric_mask=target_lyric_mask,
src_latents=src_latents,
random_generators=retake_random_generators, # more diversity
infer_steps=infer_step,
guidance_scale=guidance_scale,
n_min=edit_n_min,
n_max=edit_n_max,
n_avg=edit_n_avg,
)
else:
target_latents = self.text2music_diffusion_process(
duration=audio_duration,
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embds=speaker_embeds,
lyric_token_ids=lyric_token_idx,
lyric_mask=lyric_mask,
guidance_scale=guidance_scale,
omega_scale=omega_scale,
infer_steps=infer_step,
random_generators=random_generators,
scheduler_type=scheduler_type,
cfg_type=cfg_type,
guidance_interval=guidance_interval,
guidance_interval_decay=guidance_interval_decay,
min_guidance_scale=min_guidance_scale,
oss_steps=oss_steps,
encoder_text_hidden_states_null=encoder_text_hidden_states_null,
use_erg_lyric=use_erg_lyric,
use_erg_diffusion=use_erg_diffusion,
retake_random_generators=retake_random_generators,
retake_variance=retake_variance,
add_retake_noise=add_retake_noise,
guidance_scale_text=guidance_scale_text,
guidance_scale_lyric=guidance_scale_lyric,
repaint_start=repaint_start,
repaint_end=repaint_end,
src_latents=src_latents,
)
end_time = time.time()
diffusion_time_cost = end_time - start_time
start_time = end_time
output_paths = self.latents2audio(
latents=target_latents,
target_wav_duration_second=audio_duration,
save_path=save_path,
format=format,
)
end_time = time.time()
latent2audio_time_cost = end_time - start_time
timecosts = {
"preprocess": preprocess_time_cost,
"diffusion": diffusion_time_cost,
"latent2audio": latent2audio_time_cost,
}
input_params_json = {
"task": task,
"prompt": prompt if task != "edit" else edit_target_prompt,
"lyrics": lyrics if task != "edit" else edit_target_lyrics,
"audio_duration": audio_duration,
"infer_step": infer_step,
"guidance_scale": guidance_scale,
"scheduler_type": scheduler_type,
"cfg_type": cfg_type,
"omega_scale": omega_scale,
"guidance_interval": guidance_interval,
"guidance_interval_decay": guidance_interval_decay,
"min_guidance_scale": min_guidance_scale,
"use_erg_tag": use_erg_tag,
"use_erg_lyric": use_erg_lyric,
"use_erg_diffusion": use_erg_diffusion,
"oss_steps": oss_steps,
"timecosts": timecosts,
"actual_seeds": actual_seeds,
"retake_seeds": actual_retake_seeds,
"retake_variance": retake_variance,
"guidance_scale_text": guidance_scale_text,
"guidance_scale_lyric": guidance_scale_lyric,
"repaint_start": repaint_start,
"repaint_end": repaint_end,
"edit_n_min": edit_n_min,
"edit_n_max": edit_n_max,
"edit_n_avg": edit_n_avg,
"src_audio_path": src_audio_path,
"edit_target_prompt": edit_target_prompt,
"edit_target_lyrics": edit_target_lyrics,
}
# save input_params_json
for output_audio_path in output_paths:
input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json")
input_params_json["audio_path"] = output_audio_path
with open(input_params_json_save_path, "w", encoding="utf-8") as f:
json.dump(input_params_json, f, indent=4, ensure_ascii=False)
return output_paths + [input_params_json]