Spaces:
Running
Running
import random | |
import time | |
import os | |
import re | |
import torch | |
import torch.nn as nn | |
from loguru import logger | |
from tqdm import tqdm | |
import json | |
import math | |
from huggingface_hub import hf_hub_download | |
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
from schedulers.scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler | |
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import retrieve_timesteps | |
from diffusers.utils.torch_utils import randn_tensor | |
from transformers import UMT5EncoderModel, AutoTokenizer | |
from language_segmentation import LangSegment | |
from music_dcae.music_dcae_pipeline import MusicDCAE | |
from models.ace_step_transformer import ACEStepTransformer2DModel | |
from models.lyrics_utils.lyric_tokenizer import VoiceBpeTokenizer | |
from apg_guidance import apg_forward, MomentumBuffer, cfg_forward, cfg_zero_star, cfg_double_condition_forward | |
import torchaudio | |
import torio | |
torch.backends.cudnn.benchmark = False | |
torch.set_float32_matmul_precision('high') | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cuda.matmul.allow_tf32 = True | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
SUPPORT_LANGUAGES = { | |
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285, | |
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293, | |
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753, | |
"ko": 6152, "hi": 6680 | |
} | |
structure_pattern = re.compile(r"\[.*?\]") | |
def ensure_directory_exists(directory): | |
directory = str(directory) | |
if not os.path.exists(directory): | |
os.makedirs(directory) | |
REPO_ID = "ACE-Step/ACE-Step-v1-3.5B" | |
# class ACEStepPipeline(DiffusionPipeline): | |
class ACEStepPipeline: | |
def __init__(self, checkpoint_dir=None, device_id=0, dtype="bfloat16", text_encoder_checkpoint_path=None, persistent_storage_path=None, torch_compile=False, **kwargs): | |
if not checkpoint_dir: | |
if persistent_storage_path is None: | |
checkpoint_dir = os.path.join(os.path.dirname(__file__), "checkpoints") | |
else: | |
checkpoint_dir = os.path.join(persistent_storage_path, "checkpoints") | |
ensure_directory_exists(checkpoint_dir) | |
self.checkpoint_dir = checkpoint_dir | |
device = torch.device(f"cuda:{device_id}") if torch.cuda.is_available() else torch.device("cpu") | |
if device.type == "cpu" and torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32 | |
if device.type == "mps" and self.dtype == torch.bfloat16: | |
self.dtype = torch.float16 | |
self.device = device | |
self.loaded = False | |
self.torch_compile = torch_compile | |
def load_checkpoint(self, checkpoint_dir=None): | |
device = self.device | |
dcae_model_path = os.path.join(checkpoint_dir, "music_dcae_f8c8") | |
vocoder_model_path = os.path.join(checkpoint_dir, "music_vocoder") | |
ace_step_model_path = os.path.join(checkpoint_dir, "ace_step_transformer") | |
text_encoder_model_path = os.path.join(checkpoint_dir, "umt5-base") | |
files_exist = ( | |
os.path.exists(os.path.join(dcae_model_path, "config.json")) and | |
os.path.exists(os.path.join(dcae_model_path, "diffusion_pytorch_model.safetensors")) and | |
os.path.exists(os.path.join(vocoder_model_path, "config.json")) and | |
os.path.exists(os.path.join(vocoder_model_path, "diffusion_pytorch_model.safetensors")) and | |
os.path.exists(os.path.join(ace_step_model_path, "config.json")) and | |
os.path.exists(os.path.join(ace_step_model_path, "diffusion_pytorch_model.safetensors")) and | |
os.path.exists(os.path.join(text_encoder_model_path, "config.json")) and | |
os.path.exists(os.path.join(text_encoder_model_path, "model.safetensors")) and | |
os.path.exists(os.path.join(text_encoder_model_path, "special_tokens_map.json")) and | |
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer_config.json")) and | |
os.path.exists(os.path.join(text_encoder_model_path, "tokenizer.json")) | |
) | |
if not files_exist: | |
logger.info(f"Checkpoint directory {checkpoint_dir} is not complete, downloading from Hugging Face Hub") | |
# download music dcae model | |
os.makedirs(dcae_model_path, exist_ok=True) | |
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8", | |
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="music_dcae_f8c8", | |
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
# download vocoder model | |
os.makedirs(vocoder_model_path, exist_ok=True) | |
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder", | |
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="music_vocoder", | |
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
# download ace_step transformer model | |
os.makedirs(ace_step_model_path, exist_ok=True) | |
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer", | |
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="ace_step_transformer", | |
filename="diffusion_pytorch_model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
# download text encoder model | |
os.makedirs(text_encoder_model_path, exist_ok=True) | |
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
filename="config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
filename="model.safetensors", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
filename="special_tokens_map.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
filename="tokenizer_config.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
hf_hub_download(repo_id=REPO_ID, subfolder="umt5-base", | |
filename="tokenizer.json", local_dir=checkpoint_dir, local_dir_use_symlinks=False) | |
logger.info("Models downloaded") | |
dcae_checkpoint_path = dcae_model_path | |
vocoder_checkpoint_path = vocoder_model_path | |
ace_step_checkpoint_path = ace_step_model_path | |
text_encoder_checkpoint_path = text_encoder_model_path | |
self.music_dcae = MusicDCAE(dcae_checkpoint_path=dcae_checkpoint_path, vocoder_checkpoint_path=vocoder_checkpoint_path) | |
self.music_dcae.to(device).eval().to(self.dtype) | |
self.ace_step_transformer = ACEStepTransformer2DModel.from_pretrained(ace_step_checkpoint_path, torch_dtype=self.dtype) | |
self.ace_step_transformer.to(device).eval().to(self.dtype) | |
lang_segment = LangSegment() | |
lang_segment.setfilters([ | |
'af', 'am', 'an', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'dz', 'el', | |
'en', 'eo', 'es', 'et', 'eu', 'fa', 'fi', 'fo', 'fr', 'ga', 'gl', 'gu', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', | |
'id', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lb', 'lo', 'lt', 'lv', 'mg', | |
'mk', 'ml', 'mn', 'mr', 'ms', 'mt', 'nb', 'ne', 'nl', 'nn', 'no', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', | |
'ro', 'ru', 'rw', 'se', 'si', 'sk', 'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'th', 'tl', 'tr', 'ug', 'uk', | |
'ur', 'vi', 'vo', 'wa', 'xh', 'zh', 'zu' | |
]) | |
self.lang_segment = lang_segment | |
self.lyric_tokenizer = VoiceBpeTokenizer() | |
text_encoder_model = UMT5EncoderModel.from_pretrained(text_encoder_checkpoint_path, torch_dtype=self.dtype).eval() | |
text_encoder_model = text_encoder_model.to(device).to(self.dtype) | |
text_encoder_model.requires_grad_(False) | |
self.text_encoder_model = text_encoder_model | |
self.text_tokenizer = AutoTokenizer.from_pretrained(text_encoder_checkpoint_path) | |
self.loaded = True | |
# compile | |
if self.torch_compile: | |
self.music_dcae = torch.compile(self.music_dcae) | |
self.ace_step_transformer = torch.compile(self.ace_step_transformer) | |
self.text_encoder_model = torch.compile(self.text_encoder_model) | |
def get_text_embeddings(self, texts, device, text_max_length=256): | |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length) | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
if self.text_encoder_model.device != device: | |
self.text_encoder_model.to(device) | |
with torch.no_grad(): | |
outputs = self.text_encoder_model(**inputs) | |
last_hidden_states = outputs.last_hidden_state | |
attention_mask = inputs["attention_mask"] | |
return last_hidden_states, attention_mask | |
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10): | |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length) | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
if self.text_encoder_model.device != device: | |
self.text_encoder_model.to(device) | |
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10): | |
handlers = [] | |
def hook(module, input, output): | |
output[:] *= tau | |
return output | |
for i in range(l_min, l_max): | |
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook) | |
handlers.append(handler) | |
with torch.no_grad(): | |
outputs = self.text_encoder_model(**inputs) | |
last_hidden_states = outputs.last_hidden_state | |
for hook in handlers: | |
hook.remove() | |
return last_hidden_states | |
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max) | |
return last_hidden_states | |
def set_seeds(self, batch_size, manual_seeds=None): | |
seeds = None | |
if manual_seeds is not None: | |
if isinstance(manual_seeds, str): | |
if "," in manual_seeds: | |
seeds = list(map(int, manual_seeds.split(","))) | |
elif manual_seeds.isdigit(): | |
seeds = int(manual_seeds) | |
random_generators = [torch.Generator(device=self.device) for _ in range(batch_size)] | |
actual_seeds = [] | |
for i in range(batch_size): | |
seed = None | |
if seeds is None: | |
seed = torch.randint(0, 2**32, (1,)).item() | |
if isinstance(seeds, int): | |
seed = seeds | |
if isinstance(seeds, list): | |
seed = seeds[i] | |
random_generators[i].manual_seed(seed) | |
actual_seeds.append(seed) | |
return random_generators, actual_seeds | |
def get_lang(self, text): | |
language = "en" | |
try: | |
_ = self.lang_segment.getTexts(text) | |
langCounts = self.lang_segment.getCounts() | |
language = langCounts[0][0] | |
if len(langCounts) > 1 and language == "en": | |
language = langCounts[1][0] | |
except Exception as err: | |
language = "en" | |
return language | |
def tokenize_lyrics(self, lyrics, debug=False): | |
lines = lyrics.split("\n") | |
lyric_token_idx = [261] | |
for line in lines: | |
line = line.strip() | |
if not line: | |
lyric_token_idx += [2] | |
continue | |
lang = self.get_lang(line) | |
if lang not in SUPPORT_LANGUAGES: | |
lang = "en" | |
if "zh" in lang: | |
lang = "zh" | |
if "spa" in lang: | |
lang = "es" | |
try: | |
if structure_pattern.match(line): | |
token_idx = self.lyric_tokenizer.encode(line, "en") | |
else: | |
token_idx = self.lyric_tokenizer.encode(line, lang) | |
if debug: | |
toks = self.lyric_tokenizer.batch_decode([[tok_id] for tok_id in token_idx]) | |
logger.info(f"debbug {line} --> {lang} --> {toks}") | |
lyric_token_idx = lyric_token_idx + token_idx + [2] | |
except Exception as e: | |
print("tokenize error", e, "for line", line, "major_language", lang) | |
return lyric_token_idx | |
def calc_v( | |
self, | |
zt_src, | |
zt_tar, | |
t, | |
encoder_text_hidden_states, | |
text_attention_mask, | |
target_encoder_text_hidden_states, | |
target_text_attention_mask, | |
speaker_embds, | |
target_speaker_embeds, | |
lyric_token_ids, | |
lyric_mask, | |
target_lyric_token_ids, | |
target_lyric_mask, | |
do_classifier_free_guidance=False, | |
guidance_scale=1.0, | |
target_guidance_scale=1.0, | |
cfg_type="apg", | |
attention_mask=None, | |
momentum_buffer=None, | |
momentum_buffer_tar=None, | |
return_src_pred=True | |
): | |
noise_pred_src = None | |
if return_src_pred: | |
src_latent_model_input = torch.cat([zt_src, zt_src]) if do_classifier_free_guidance else zt_src | |
timestep = t.expand(src_latent_model_input.shape[0]) | |
# source | |
noise_pred_src = self.ace_step_transformer( | |
hidden_states=src_latent_model_input, | |
attention_mask=attention_mask, | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
speaker_embeds=speaker_embds, | |
lyric_token_idx=lyric_token_ids, | |
lyric_mask=lyric_mask, | |
timestep=timestep, | |
).sample | |
if do_classifier_free_guidance: | |
noise_pred_with_cond_src, noise_pred_uncond_src = noise_pred_src.chunk(2) | |
if cfg_type == "apg": | |
noise_pred_src = apg_forward( | |
pred_cond=noise_pred_with_cond_src, | |
pred_uncond=noise_pred_uncond_src, | |
guidance_scale=guidance_scale, | |
momentum_buffer=momentum_buffer, | |
) | |
elif cfg_type == "cfg": | |
noise_pred_src = cfg_forward( | |
cond_output=noise_pred_with_cond_src, | |
uncond_output=noise_pred_uncond_src, | |
cfg_strength=guidance_scale, | |
) | |
tar_latent_model_input = torch.cat([zt_tar, zt_tar]) if do_classifier_free_guidance else zt_tar | |
timestep = t.expand(tar_latent_model_input.shape[0]) | |
# target | |
noise_pred_tar = self.ace_step_transformer( | |
hidden_states=tar_latent_model_input, | |
attention_mask=attention_mask, | |
encoder_text_hidden_states=target_encoder_text_hidden_states, | |
text_attention_mask=target_text_attention_mask, | |
speaker_embeds=target_speaker_embeds, | |
lyric_token_idx=target_lyric_token_ids, | |
lyric_mask=target_lyric_mask, | |
timestep=timestep, | |
).sample | |
if do_classifier_free_guidance: | |
noise_pred_with_cond_tar, noise_pred_uncond_tar = noise_pred_tar.chunk(2) | |
if cfg_type == "apg": | |
noise_pred_tar = apg_forward( | |
pred_cond=noise_pred_with_cond_tar, | |
pred_uncond=noise_pred_uncond_tar, | |
guidance_scale=target_guidance_scale, | |
momentum_buffer=momentum_buffer_tar, | |
) | |
elif cfg_type == "cfg": | |
noise_pred_tar = cfg_forward( | |
cond_output=noise_pred_with_cond_tar, | |
uncond_output=noise_pred_uncond_tar, | |
cfg_strength=target_guidance_scale, | |
) | |
return noise_pred_src, noise_pred_tar | |
def flowedit_diffusion_process( | |
self, | |
encoder_text_hidden_states, | |
text_attention_mask, | |
speaker_embds, | |
lyric_token_ids, | |
lyric_mask, | |
target_encoder_text_hidden_states, | |
target_text_attention_mask, | |
target_speaker_embeds, | |
target_lyric_token_ids, | |
target_lyric_mask, | |
src_latents, | |
random_generators=None, | |
infer_steps=60, | |
guidance_scale=15.0, | |
n_min=0, | |
n_max=1.0, | |
n_avg=1, | |
): | |
do_classifier_free_guidance = True | |
if guidance_scale == 0.0 or guidance_scale == 1.0: | |
do_classifier_free_guidance = False | |
target_guidance_scale = guidance_scale | |
device = encoder_text_hidden_states.device | |
dtype = encoder_text_hidden_states.dtype | |
bsz = encoder_text_hidden_states.shape[0] | |
scheduler = FlowMatchEulerDiscreteScheduler( | |
num_train_timesteps=1000, | |
shift=3.0, | |
) | |
T_steps = infer_steps | |
frame_length = src_latents.shape[-1] | |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype) | |
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None) | |
if do_classifier_free_guidance: | |
attention_mask = torch.cat([attention_mask] * 2, dim=0) | |
encoder_text_hidden_states = torch.cat([encoder_text_hidden_states, torch.zeros_like(encoder_text_hidden_states)], 0) | |
text_attention_mask = torch.cat([text_attention_mask] * 2, dim=0) | |
target_encoder_text_hidden_states = torch.cat([target_encoder_text_hidden_states, torch.zeros_like(target_encoder_text_hidden_states)], 0) | |
target_text_attention_mask = torch.cat([target_text_attention_mask] * 2, dim=0) | |
speaker_embds = torch.cat([speaker_embds, torch.zeros_like(speaker_embds)], 0) | |
target_speaker_embeds = torch.cat([target_speaker_embeds, torch.zeros_like(target_speaker_embeds)], 0) | |
lyric_token_ids = torch.cat([lyric_token_ids, torch.zeros_like(lyric_token_ids)], 0) | |
lyric_mask = torch.cat([lyric_mask, torch.zeros_like(lyric_mask)], 0) | |
target_lyric_token_ids = torch.cat([target_lyric_token_ids, torch.zeros_like(target_lyric_token_ids)], 0) | |
target_lyric_mask = torch.cat([target_lyric_mask, torch.zeros_like(target_lyric_mask)], 0) | |
momentum_buffer = MomentumBuffer() | |
momentum_buffer_tar = MomentumBuffer() | |
x_src = src_latents | |
zt_edit = x_src.clone() | |
xt_tar = None | |
n_min = int(infer_steps * n_min) | |
n_max = int(infer_steps * n_max) | |
logger.info("flowedit start from {} to {}".format(n_min, n_max)) | |
for i, t in tqdm(enumerate(timesteps), total=T_steps): | |
if i < n_min: | |
continue | |
t_i = t/1000 | |
if i+1 < len(timesteps): | |
t_im1 = (timesteps[i+1])/1000 | |
else: | |
t_im1 = torch.zeros_like(t_i).to(t_i.device) | |
if i < n_max: | |
# Calculate the average of the V predictions | |
V_delta_avg = torch.zeros_like(x_src) | |
for k in range(n_avg): | |
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype) | |
zt_src = (1 - t_i) * x_src + (t_i) * fwd_noise | |
zt_tar = zt_edit + zt_src - x_src | |
Vt_src, Vt_tar = self.calc_v( | |
zt_src=zt_src, | |
zt_tar=zt_tar, | |
t=t, | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
target_text_attention_mask=target_text_attention_mask, | |
speaker_embds=speaker_embds, | |
target_speaker_embeds=target_speaker_embeds, | |
lyric_token_ids=lyric_token_ids, | |
lyric_mask=lyric_mask, | |
target_lyric_token_ids=target_lyric_token_ids, | |
target_lyric_mask=target_lyric_mask, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guidance_scale=guidance_scale, | |
target_guidance_scale=target_guidance_scale, | |
attention_mask=attention_mask, | |
momentum_buffer=momentum_buffer | |
) | |
V_delta_avg += (1 / n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) | |
# propagate direct ODE | |
zt_edit = zt_edit.to(torch.float32) | |
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg | |
zt_edit = zt_edit.to(V_delta_avg.dtype) | |
else: # i >= T_steps-n_min # regular sampling for last n_min steps | |
if i == n_max: | |
fwd_noise = randn_tensor(shape=x_src.shape, generator=random_generators, device=device, dtype=dtype) | |
scheduler._init_step_index(t) | |
sigma = scheduler.sigmas[scheduler.step_index] | |
xt_src = sigma * fwd_noise + (1.0 - sigma) * x_src | |
xt_tar = zt_edit + xt_src - x_src | |
_, Vt_tar = self.calc_v( | |
zt_src=None, | |
zt_tar=xt_tar, | |
t=t, | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
target_text_attention_mask=target_text_attention_mask, | |
speaker_embds=speaker_embds, | |
target_speaker_embeds=target_speaker_embeds, | |
lyric_token_ids=lyric_token_ids, | |
lyric_mask=lyric_mask, | |
target_lyric_token_ids=target_lyric_token_ids, | |
target_lyric_mask=target_lyric_mask, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
guidance_scale=guidance_scale, | |
target_guidance_scale=target_guidance_scale, | |
attention_mask=attention_mask, | |
momentum_buffer_tar=momentum_buffer_tar, | |
return_src_pred=False, | |
) | |
dtype = Vt_tar.dtype | |
xt_tar = xt_tar.to(torch.float32) | |
prev_sample = xt_tar + (t_im1 - t_i) * Vt_tar | |
prev_sample = prev_sample.to(dtype) | |
xt_tar = prev_sample | |
target_latents = zt_edit if xt_tar is None else xt_tar | |
return target_latents | |
def text2music_diffusion_process( | |
self, | |
duration, | |
encoder_text_hidden_states, | |
text_attention_mask, | |
speaker_embds, | |
lyric_token_ids, | |
lyric_mask, | |
random_generators=None, | |
infer_steps=60, | |
guidance_scale=15.0, | |
omega_scale=10.0, | |
scheduler_type="euler", | |
cfg_type="apg", | |
zero_steps=1, | |
use_zero_init=True, | |
guidance_interval=0.5, | |
guidance_interval_decay=1.0, | |
min_guidance_scale=3.0, | |
oss_steps=[], | |
encoder_text_hidden_states_null=None, | |
use_erg_lyric=False, | |
use_erg_diffusion=False, | |
retake_random_generators=None, | |
retake_variance=0.5, | |
add_retake_noise=False, | |
guidance_scale_text=0.0, | |
guidance_scale_lyric=0.0, | |
repaint_start=0, | |
repaint_end=0, | |
src_latents=None, | |
): | |
logger.info("cfg_type: {}, guidance_scale: {}, omega_scale: {}".format(cfg_type, guidance_scale, omega_scale)) | |
do_classifier_free_guidance = True | |
if guidance_scale == 0.0 or guidance_scale == 1.0: | |
do_classifier_free_guidance = False | |
do_double_condition_guidance = False | |
if guidance_scale_text is not None and guidance_scale_text > 1.0 and guidance_scale_lyric is not None and guidance_scale_lyric > 1.0: | |
do_double_condition_guidance = True | |
logger.info("do_double_condition_guidance: {}, guidance_scale_text: {}, guidance_scale_lyric: {}".format(do_double_condition_guidance, guidance_scale_text, guidance_scale_lyric)) | |
device = encoder_text_hidden_states.device | |
dtype = encoder_text_hidden_states.dtype | |
bsz = encoder_text_hidden_states.shape[0] | |
if scheduler_type == "euler": | |
scheduler = FlowMatchEulerDiscreteScheduler( | |
num_train_timesteps=1000, | |
shift=3.0, | |
) | |
elif scheduler_type == "heun": | |
scheduler = FlowMatchHeunDiscreteScheduler( | |
num_train_timesteps=1000, | |
shift=3.0, | |
) | |
frame_length = int(duration * 44100 / 512 / 8) | |
if src_latents is not None: | |
frame_length = src_latents.shape[-1] | |
if len(oss_steps) > 0: | |
infer_steps = max(oss_steps) | |
scheduler.set_timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None) | |
new_timesteps = torch.zeros(len(oss_steps), dtype=dtype, device=device) | |
for idx in range(len(oss_steps)): | |
new_timesteps[idx] = timesteps[oss_steps[idx]-1] | |
num_inference_steps = len(oss_steps) | |
sigmas = (new_timesteps / 1000).float().cpu().numpy() | |
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=num_inference_steps, device=device, sigmas=sigmas) | |
logger.info(f"oss_steps: {oss_steps}, num_inference_steps: {num_inference_steps} after remapping to timesteps {timesteps}") | |
else: | |
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps=infer_steps, device=device, timesteps=None) | |
target_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=random_generators, device=device, dtype=dtype) | |
is_repaint = False | |
is_extend = False | |
if add_retake_noise: | |
n_min = int(infer_steps * (1 - retake_variance)) | |
retake_variance = torch.tensor(retake_variance * math.pi/2).to(device).to(dtype) | |
retake_latents = randn_tensor(shape=(bsz, 8, 16, frame_length), generator=retake_random_generators, device=device, dtype=dtype) | |
repaint_start_frame = int(repaint_start * 44100 / 512 / 8) | |
repaint_end_frame = int(repaint_end * 44100 / 512 / 8) | |
x0 = src_latents | |
# retake | |
is_repaint = (repaint_end_frame - repaint_start_frame != frame_length) | |
is_extend = (repaint_start_frame < 0) or (repaint_end_frame > frame_length) | |
if is_extend: | |
is_repaint = True | |
# TODO: train a mask aware repainting controlnet | |
# to make sure mean = 0, std = 1 | |
if not is_repaint: | |
target_latents = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents | |
elif not is_extend: | |
# if repaint_end_frame | |
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype) | |
repaint_mask[:, :, :, repaint_start_frame:repaint_end_frame] = 1.0 | |
repaint_noise = torch.cos(retake_variance) * target_latents + torch.sin(retake_variance) * retake_latents | |
repaint_noise = torch.where(repaint_mask == 1.0, repaint_noise, target_latents) | |
zt_edit = x0.clone() | |
z0 = repaint_noise | |
elif is_extend: | |
to_right_pad_gt_latents = None | |
to_left_pad_gt_latents = None | |
gt_latents = src_latents | |
src_latents_length = gt_latents.shape[-1] | |
max_infer_fame_length = int(240 * 44100 / 512 / 8) | |
left_pad_frame_length = 0 | |
right_pad_frame_length = 0 | |
right_trim_length = 0 | |
left_trim_length = 0 | |
if repaint_start_frame < 0: | |
left_pad_frame_length = abs(repaint_start_frame) | |
frame_length = left_pad_frame_length + gt_latents.shape[-1] | |
extend_gt_latents = torch.nn.functional.pad(gt_latents, (left_pad_frame_length, 0), "constant", 0) | |
if frame_length > max_infer_fame_length: | |
right_trim_length = frame_length - max_infer_fame_length | |
extend_gt_latents = extend_gt_latents[:,:,:,:max_infer_fame_length] | |
to_right_pad_gt_latents = extend_gt_latents[:,:,:,-right_trim_length:] | |
frame_length = max_infer_fame_length | |
repaint_start_frame = 0 | |
gt_latents = extend_gt_latents | |
if repaint_end_frame > src_latents_length: | |
right_pad_frame_length = repaint_end_frame - gt_latents.shape[-1] | |
frame_length = gt_latents.shape[-1] + right_pad_frame_length | |
extend_gt_latents = torch.nn.functional.pad(gt_latents, (0, right_pad_frame_length), "constant", 0) | |
if frame_length > max_infer_fame_length: | |
left_trim_length = frame_length - max_infer_fame_length | |
extend_gt_latents = extend_gt_latents[:,:,:,-max_infer_fame_length:] | |
to_left_pad_gt_latents = extend_gt_latents[:,:,:,:left_trim_length] | |
frame_length = max_infer_fame_length | |
repaint_end_frame = frame_length | |
gt_latents = extend_gt_latents | |
repaint_mask = torch.zeros((bsz, 8, 16, frame_length), device=device, dtype=dtype) | |
if left_pad_frame_length > 0: | |
repaint_mask[:,:,:,:left_pad_frame_length] = 1.0 | |
if right_pad_frame_length > 0: | |
repaint_mask[:,:,:,-right_pad_frame_length:] = 1.0 | |
x0 = gt_latents | |
padd_list = [] | |
if left_pad_frame_length > 0: | |
padd_list.append(retake_latents[:, :, :, :left_pad_frame_length]) | |
padd_list.append(target_latents[:,:,:,left_trim_length:target_latents.shape[-1]-right_trim_length]) | |
if right_pad_frame_length > 0: | |
padd_list.append(retake_latents[:, :, :, -right_pad_frame_length:]) | |
target_latents = torch.cat(padd_list, dim=-1) | |
assert target_latents.shape[-1] == x0.shape[-1], f"{target_latents.shape=} {x0.shape=}" | |
zt_edit = x0.clone() | |
z0 = target_latents | |
attention_mask = torch.ones(bsz, frame_length, device=device, dtype=dtype) | |
# guidance interval | |
start_idx = int(num_inference_steps * ((1 - guidance_interval) / 2)) | |
end_idx = int(num_inference_steps * (guidance_interval / 2 + 0.5)) | |
logger.info(f"start_idx: {start_idx}, end_idx: {end_idx}, num_inference_steps: {num_inference_steps}") | |
momentum_buffer = MomentumBuffer() | |
def forward_encoder_with_temperature(self, inputs, tau=0.01, l_min=4, l_max=6): | |
handlers = [] | |
def hook(module, input, output): | |
output[:] *= tau | |
return output | |
for i in range(l_min, l_max): | |
handler = self.ace_step_transformer.lyric_encoder.encoders[i].self_attn.linear_q.register_forward_hook(hook) | |
handlers.append(handler) | |
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode(**inputs) | |
for hook in handlers: | |
hook.remove() | |
return encoder_hidden_states | |
# P(speaker, text, lyric) | |
encoder_hidden_states, encoder_hidden_mask = self.ace_step_transformer.encode( | |
encoder_text_hidden_states, | |
text_attention_mask, | |
speaker_embds, | |
lyric_token_ids, | |
lyric_mask, | |
) | |
if use_erg_lyric: | |
# P(null_speaker, text_weaker, lyric_weaker) | |
encoder_hidden_states_null = forward_encoder_with_temperature( | |
self, | |
inputs={ | |
"encoder_text_hidden_states": encoder_text_hidden_states_null if encoder_text_hidden_states_null is not None else torch.zeros_like(encoder_text_hidden_states), | |
"text_attention_mask": text_attention_mask, | |
"speaker_embeds": torch.zeros_like(speaker_embds), | |
"lyric_token_idx": lyric_token_ids, | |
"lyric_mask": lyric_mask, | |
} | |
) | |
else: | |
# P(null_speaker, null_text, null_lyric) | |
encoder_hidden_states_null, _ = self.ace_step_transformer.encode( | |
torch.zeros_like(encoder_text_hidden_states), | |
text_attention_mask, | |
torch.zeros_like(speaker_embds), | |
torch.zeros_like(lyric_token_ids), | |
lyric_mask, | |
) | |
encoder_hidden_states_no_lyric = None | |
if do_double_condition_guidance: | |
# P(null_speaker, text, lyric_weaker) | |
if use_erg_lyric: | |
encoder_hidden_states_no_lyric = forward_encoder_with_temperature( | |
self, | |
inputs={ | |
"encoder_text_hidden_states": encoder_text_hidden_states, | |
"text_attention_mask": text_attention_mask, | |
"speaker_embeds": torch.zeros_like(speaker_embds), | |
"lyric_token_idx": lyric_token_ids, | |
"lyric_mask": lyric_mask, | |
} | |
) | |
# P(null_speaker, text, no_lyric) | |
else: | |
encoder_hidden_states_no_lyric, _ = self.ace_step_transformer.encode( | |
encoder_text_hidden_states, | |
text_attention_mask, | |
torch.zeros_like(speaker_embds), | |
torch.zeros_like(lyric_token_ids), | |
lyric_mask, | |
) | |
def forward_diffusion_with_temperature(self, hidden_states, timestep, inputs, tau=0.01, l_min=15, l_max=20): | |
handlers = [] | |
def hook(module, input, output): | |
output[:] *= tau | |
return output | |
for i in range(l_min, l_max): | |
handler = self.ace_step_transformer.transformer_blocks[i].attn.to_q.register_forward_hook(hook) | |
handlers.append(handler) | |
handler = self.ace_step_transformer.transformer_blocks[i].cross_attn.to_q.register_forward_hook(hook) | |
handlers.append(handler) | |
sample = self.ace_step_transformer.decode(hidden_states=hidden_states, timestep=timestep, **inputs).sample | |
for hook in handlers: | |
hook.remove() | |
return sample | |
for i, t in tqdm(enumerate(timesteps), total=num_inference_steps): | |
if is_repaint: | |
if i < n_min: | |
continue | |
elif i == n_min: | |
t_i = t / 1000 | |
zt_src = (1 - t_i) * x0 + (t_i) * z0 | |
target_latents = zt_edit + zt_src - x0 | |
logger.info(f"repaint start from {n_min} add {t_i} level of noise") | |
# expand the latents if we are doing classifier free guidance | |
latents = target_latents | |
is_in_guidance_interval = start_idx <= i < end_idx | |
if is_in_guidance_interval and do_classifier_free_guidance: | |
# compute current guidance scale | |
if guidance_interval_decay > 0: | |
# Linearly interpolate to calculate the current guidance scale | |
progress = (i - start_idx) / (end_idx - start_idx - 1) # 归一化到[0,1] | |
current_guidance_scale = guidance_scale - (guidance_scale - min_guidance_scale) * progress * guidance_interval_decay | |
else: | |
current_guidance_scale = guidance_scale | |
latent_model_input = latents | |
timestep = t.expand(latent_model_input.shape[0]) | |
output_length = latent_model_input.shape[-1] | |
# P(x|speaker, text, lyric) | |
noise_pred_with_cond = self.ace_step_transformer.decode( | |
hidden_states=latent_model_input, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_hidden_mask=encoder_hidden_mask, | |
output_length=output_length, | |
timestep=timestep, | |
).sample | |
noise_pred_with_only_text_cond = None | |
if do_double_condition_guidance and encoder_hidden_states_no_lyric is not None: | |
noise_pred_with_only_text_cond = self.ace_step_transformer.decode( | |
hidden_states=latent_model_input, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states_no_lyric, | |
encoder_hidden_mask=encoder_hidden_mask, | |
output_length=output_length, | |
timestep=timestep, | |
).sample | |
if use_erg_diffusion: | |
noise_pred_uncond = forward_diffusion_with_temperature( | |
self, | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
inputs={ | |
"encoder_hidden_states": encoder_hidden_states_null, | |
"encoder_hidden_mask": encoder_hidden_mask, | |
"output_length": output_length, | |
"attention_mask": attention_mask, | |
}, | |
) | |
else: | |
noise_pred_uncond = self.ace_step_transformer.decode( | |
hidden_states=latent_model_input, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states_null, | |
encoder_hidden_mask=encoder_hidden_mask, | |
output_length=output_length, | |
timestep=timestep, | |
).sample | |
if do_double_condition_guidance and noise_pred_with_only_text_cond is not None: | |
noise_pred = cfg_double_condition_forward( | |
cond_output=noise_pred_with_cond, | |
uncond_output=noise_pred_uncond, | |
only_text_cond_output=noise_pred_with_only_text_cond, | |
guidance_scale_text=guidance_scale_text, | |
guidance_scale_lyric=guidance_scale_lyric, | |
) | |
elif cfg_type == "apg": | |
noise_pred = apg_forward( | |
pred_cond=noise_pred_with_cond, | |
pred_uncond=noise_pred_uncond, | |
guidance_scale=current_guidance_scale, | |
momentum_buffer=momentum_buffer, | |
) | |
elif cfg_type == "cfg": | |
noise_pred = cfg_forward( | |
cond_output=noise_pred_with_cond, | |
uncond_output=noise_pred_uncond, | |
cfg_strength=current_guidance_scale, | |
) | |
elif cfg_type == "cfg_star": | |
noise_pred = cfg_zero_star( | |
noise_pred_with_cond=noise_pred_with_cond, | |
noise_pred_uncond=noise_pred_uncond, | |
guidance_scale=current_guidance_scale, | |
i=i, | |
zero_steps=zero_steps, | |
use_zero_init=use_zero_init | |
) | |
else: | |
latent_model_input = latents | |
timestep = t.expand(latent_model_input.shape[0]) | |
noise_pred = self.ace_step_transformer.decode( | |
hidden_states=latent_model_input, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_hidden_mask=encoder_hidden_mask, | |
output_length=latent_model_input.shape[-1], | |
timestep=timestep, | |
).sample | |
if is_repaint and i >= n_min: | |
t_i = t/1000 | |
if i+1 < len(timesteps): | |
t_im1 = (timesteps[i+1])/1000 | |
else: | |
t_im1 = torch.zeros_like(t_i).to(t_i.device) | |
dtype = noise_pred.dtype | |
target_latents = target_latents.to(torch.float32) | |
prev_sample = target_latents + (t_im1 - t_i) * noise_pred | |
prev_sample = prev_sample.to(dtype) | |
target_latents = prev_sample | |
zt_src = (1 - t_im1) * x0 + (t_im1) * z0 | |
target_latents = torch.where(repaint_mask == 1.0, target_latents, zt_src) | |
else: | |
target_latents = scheduler.step(model_output=noise_pred, timestep=t, sample=target_latents, return_dict=False, omega=omega_scale)[0] | |
if is_extend: | |
if to_right_pad_gt_latents is not None: | |
target_latents = torch.cate([target_latents, to_right_pad_gt_latents], dim=-1) | |
if to_left_pad_gt_latents is not None: | |
target_latents = torch.cate([to_right_pad_gt_latents, target_latents], dim=0) | |
return target_latents | |
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="mp3"): | |
output_audio_paths = [] | |
bs = latents.shape[0] | |
audio_lengths = [target_wav_duration_second * sample_rate] * bs | |
pred_latents = latents | |
with torch.no_grad(): | |
_, pred_wavs = self.music_dcae.decode(pred_latents, sr=sample_rate) | |
pred_wavs = [pred_wav.cpu().float() for pred_wav in pred_wavs] | |
for i in tqdm(range(bs)): | |
output_audio_path = self.save_wav_file(pred_wavs[i], i, sample_rate=sample_rate) | |
output_audio_paths.append(output_audio_path) | |
return output_audio_paths | |
def save_wav_file(self, target_wav, idx, save_path=None, sample_rate=48000, format="mp3"): | |
if save_path is None: | |
logger.warning("save_path is None, using default path ./outputs/") | |
base_path = f"./outputs" | |
ensure_directory_exists(base_path) | |
else: | |
base_path = save_path | |
ensure_directory_exists(base_path) | |
output_path_flac = f"{base_path}/output_{time.strftime('%Y%m%d%H%M%S')}_{idx}.{format}" | |
target_wav = target_wav.float() | |
torchaudio.save(output_path_flac, target_wav, sample_rate=sample_rate, format=format, compression=torio.io.CodecConfig(bit_rate=320000)) | |
return output_path_flac | |
def infer_latents(self, input_audio_path): | |
if input_audio_path is None: | |
return None | |
input_audio, sr = self.music_dcae.load_audio(input_audio_path) | |
input_audio = input_audio.unsqueeze(0) | |
device, dtype = self.device, self.dtype | |
input_audio = input_audio.to(device=device, dtype=dtype) | |
latents, _ = self.music_dcae.encode(input_audio, sr=sr) | |
return latents | |
def __call__( | |
self, | |
audio_duration: float = 60.0, | |
prompt: str = None, | |
lyrics: str = None, | |
infer_step: int = 60, | |
guidance_scale: float = 15.0, | |
scheduler_type: str = "euler", | |
cfg_type: str = "apg", | |
omega_scale: int = 10.0, | |
manual_seeds: list = None, | |
guidance_interval: float = 0.5, | |
guidance_interval_decay: float = 0., | |
min_guidance_scale: float = 3.0, | |
use_erg_tag: bool = True, | |
use_erg_lyric: bool = True, | |
use_erg_diffusion: bool = True, | |
oss_steps: str = None, | |
guidance_scale_text: float = 0.0, | |
guidance_scale_lyric: float = 0.0, | |
retake_seeds: list = None, | |
retake_variance: float = 0.5, | |
task: str = "text2music", | |
repaint_start: int = 0, | |
repaint_end: int = 0, | |
src_audio_path: str = None, | |
edit_target_prompt: str = None, | |
edit_target_lyrics: str = None, | |
edit_n_min: float = 0.0, | |
edit_n_max: float = 1.0, | |
edit_n_avg: int = 1, | |
save_path: str = None, | |
format: str = "mp3", | |
batch_size: int = 1, | |
debug: bool = False, | |
): | |
start_time = time.time() | |
if not self.loaded: | |
logger.warning("Checkpoint not loaded, loading checkpoint...") | |
self.load_checkpoint(self.checkpoint_dir) | |
load_model_cost = time.time() - start_time | |
logger.info(f"Model loaded in {load_model_cost:.2f} seconds.") | |
start_time = time.time() | |
random_generators, actual_seeds = self.set_seeds(batch_size, manual_seeds) | |
retake_random_generators, actual_retake_seeds = self.set_seeds(batch_size, retake_seeds) | |
if isinstance(oss_steps, str) and len(oss_steps) > 0: | |
oss_steps = list(map(int, oss_steps.split(","))) | |
else: | |
oss_steps = [] | |
texts = [prompt] | |
encoder_text_hidden_states, text_attention_mask = self.get_text_embeddings(texts, self.device) | |
encoder_text_hidden_states = encoder_text_hidden_states.repeat(batch_size, 1, 1) | |
text_attention_mask = text_attention_mask.repeat(batch_size, 1) | |
encoder_text_hidden_states_null = None | |
if use_erg_tag: | |
encoder_text_hidden_states_null = self.get_text_embeddings_null(texts, self.device) | |
encoder_text_hidden_states_null = encoder_text_hidden_states_null.repeat(batch_size, 1, 1) | |
# not support for released checkpoint | |
speaker_embeds = torch.zeros(batch_size, 512).to(self.device).to(self.dtype) | |
# 6 lyric | |
lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
if len(lyrics) > 0: | |
lyric_token_idx = self.tokenize_lyrics(lyrics, debug=debug) | |
lyric_mask = [1] * len(lyric_token_idx) | |
lyric_token_idx = torch.tensor(lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
lyric_mask = torch.tensor(lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
if audio_duration <= 0: | |
audio_duration = random.uniform(30.0, 240.0) | |
logger.info(f"random audio duration: {audio_duration}") | |
end_time = time.time() | |
preprocess_time_cost = end_time - start_time | |
start_time = end_time | |
add_retake_noise = task in ("retake", "repaint", "extend") | |
# retake equal to repaint | |
if task == "retake": | |
repaint_start = 0 | |
repaint_end = audio_duration | |
src_latents = None | |
if src_audio_path is not None: | |
assert src_audio_path is not None and task in ("repaint", "edit", "extend"), "src_audio_path is required for retake/repaint/extend task" | |
assert os.path.exists(src_audio_path), f"src_audio_path {src_audio_path} does not exist" | |
src_latents = self.infer_latents(src_audio_path) | |
if task == "edit": | |
texts = [edit_target_prompt] | |
target_encoder_text_hidden_states, target_text_attention_mask = self.get_text_embeddings(texts, self.device) | |
target_encoder_text_hidden_states = target_encoder_text_hidden_states.repeat(batch_size, 1, 1) | |
target_text_attention_mask = target_text_attention_mask.repeat(batch_size, 1) | |
target_lyric_token_idx = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
target_lyric_mask = torch.tensor([0]).repeat(batch_size, 1).to(self.device).long() | |
if len(edit_target_lyrics) > 0: | |
target_lyric_token_idx = self.tokenize_lyrics(edit_target_lyrics, debug=True) | |
target_lyric_mask = [1] * len(target_lyric_token_idx) | |
target_lyric_token_idx = torch.tensor(target_lyric_token_idx).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
target_lyric_mask = torch.tensor(target_lyric_mask).unsqueeze(0).to(self.device).repeat(batch_size, 1) | |
target_speaker_embeds = speaker_embeds.clone() | |
target_latents = self.flowedit_diffusion_process( | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
speaker_embds=speaker_embeds, | |
lyric_token_ids=lyric_token_idx, | |
lyric_mask=lyric_mask, | |
target_encoder_text_hidden_states=target_encoder_text_hidden_states, | |
target_text_attention_mask=target_text_attention_mask, | |
target_speaker_embeds=target_speaker_embeds, | |
target_lyric_token_ids=target_lyric_token_idx, | |
target_lyric_mask=target_lyric_mask, | |
src_latents=src_latents, | |
random_generators=retake_random_generators, # more diversity | |
infer_steps=infer_step, | |
guidance_scale=guidance_scale, | |
n_min=edit_n_min, | |
n_max=edit_n_max, | |
n_avg=edit_n_avg, | |
) | |
else: | |
target_latents = self.text2music_diffusion_process( | |
duration=audio_duration, | |
encoder_text_hidden_states=encoder_text_hidden_states, | |
text_attention_mask=text_attention_mask, | |
speaker_embds=speaker_embeds, | |
lyric_token_ids=lyric_token_idx, | |
lyric_mask=lyric_mask, | |
guidance_scale=guidance_scale, | |
omega_scale=omega_scale, | |
infer_steps=infer_step, | |
random_generators=random_generators, | |
scheduler_type=scheduler_type, | |
cfg_type=cfg_type, | |
guidance_interval=guidance_interval, | |
guidance_interval_decay=guidance_interval_decay, | |
min_guidance_scale=min_guidance_scale, | |
oss_steps=oss_steps, | |
encoder_text_hidden_states_null=encoder_text_hidden_states_null, | |
use_erg_lyric=use_erg_lyric, | |
use_erg_diffusion=use_erg_diffusion, | |
retake_random_generators=retake_random_generators, | |
retake_variance=retake_variance, | |
add_retake_noise=add_retake_noise, | |
guidance_scale_text=guidance_scale_text, | |
guidance_scale_lyric=guidance_scale_lyric, | |
repaint_start=repaint_start, | |
repaint_end=repaint_end, | |
src_latents=src_latents, | |
) | |
end_time = time.time() | |
diffusion_time_cost = end_time - start_time | |
start_time = end_time | |
output_paths = self.latents2audio( | |
latents=target_latents, | |
target_wav_duration_second=audio_duration, | |
save_path=save_path, | |
format=format, | |
) | |
end_time = time.time() | |
latent2audio_time_cost = end_time - start_time | |
timecosts = { | |
"preprocess": preprocess_time_cost, | |
"diffusion": diffusion_time_cost, | |
"latent2audio": latent2audio_time_cost, | |
} | |
input_params_json = { | |
"task": task, | |
"prompt": prompt if task != "edit" else edit_target_prompt, | |
"lyrics": lyrics if task != "edit" else edit_target_lyrics, | |
"audio_duration": audio_duration, | |
"infer_step": infer_step, | |
"guidance_scale": guidance_scale, | |
"scheduler_type": scheduler_type, | |
"cfg_type": cfg_type, | |
"omega_scale": omega_scale, | |
"guidance_interval": guidance_interval, | |
"guidance_interval_decay": guidance_interval_decay, | |
"min_guidance_scale": min_guidance_scale, | |
"use_erg_tag": use_erg_tag, | |
"use_erg_lyric": use_erg_lyric, | |
"use_erg_diffusion": use_erg_diffusion, | |
"oss_steps": oss_steps, | |
"timecosts": timecosts, | |
"actual_seeds": actual_seeds, | |
"retake_seeds": actual_retake_seeds, | |
"retake_variance": retake_variance, | |
"guidance_scale_text": guidance_scale_text, | |
"guidance_scale_lyric": guidance_scale_lyric, | |
"repaint_start": repaint_start, | |
"repaint_end": repaint_end, | |
"edit_n_min": edit_n_min, | |
"edit_n_max": edit_n_max, | |
"edit_n_avg": edit_n_avg, | |
"src_audio_path": src_audio_path, | |
"edit_target_prompt": edit_target_prompt, | |
"edit_target_lyrics": edit_target_lyrics, | |
} | |
# save input_params_json | |
for output_audio_path in output_paths: | |
input_params_json_save_path = output_audio_path.replace(f".{format}", "_input_params.json") | |
input_params_json["audio_path"] = output_audio_path | |
with open(input_params_json_save_path, "w", encoding="utf-8") as f: | |
json.dump(input_params_json, f, indent=4, ensure_ascii=False) | |
return output_paths + [input_params_json] | |