# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union, Tuple import torch import torch.nn.functional as F from torch import nn from diffusers.utils import logging from diffusers.models.attention_processor import Attention logger = logging.get_logger(__name__) # pylint: disable=invalid-name class CustomLiteLAProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE""" def __init__(self): self.kernel_func = nn.ReLU(inplace=False) self.eps = 1e-15 self.pad_val = 1.0 def apply_rotary_emb( self, x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x (`torch.Tensor`): Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ cos, sin = freqs_cis # [S, D] cos = cos[None, None] sin = sin[None, None] cos, sin = cos.to(x.device), sin.to(x.device) x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, *args, **kwargs, ) -> torch.FloatTensor: hidden_states_len = hidden_states.shape[1] input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) if encoder_hidden_states is not None: context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size = hidden_states.shape[0] # `sample` projections. dtype = hidden_states.dtype query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) # `context` projections. has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj") if encoder_hidden_states is not None and has_encoder_hidden_state_proj: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) # attention if not attn.is_cross_attention: query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) else: query = hidden_states key = encoder_hidden_states value = encoder_hidden_states inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1) key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2) value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1) # RoPE需要 [B, H, S, D] 输入 # 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S]) # Apply query and key normalization if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if rotary_freqs_cis is not None: query = self.apply_rotary_emb(query, rotary_freqs_cis) if not attn.is_cross_attention: key = self.apply_rotary_emb(key, rotary_freqs_cis) elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj: key = self.apply_rotary_emb(key, rotary_freqs_cis_cross) # 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S] query = query.permute(0, 1, 3, 2) # [B, H, D, S] if attention_mask is not None: # attention_mask: [B, S] -> [B, 1, S, 1] attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1] query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1] if not attn.is_cross_attention: key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘 value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S],那么需调整mask以匹配S维度 if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj: encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1] # 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc] key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1] value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc] query = self.kernel_func(query) key = self.kernel_func(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val) vk = torch.matmul(value, key) hidden_states = torch.matmul(vk, query) if hidden_states.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.float() hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1) hidden_states = hidden_states.to(dtype) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to(dtype) # Split the attention outputs. if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj: hidden_states, encoder_hidden_states = ( hidden_states[:, : hidden_states_len], hidden_states[:, hidden_states_len:], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"): encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if encoder_hidden_states is not None and context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if torch.get_autocast_gpu_dtype() == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return hidden_states, encoder_hidden_states class CustomerAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def apply_rotary_emb( self, x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x (`torch.Tensor`): Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ cos, sin = freqs_cis # [S, D] cos = cos[None, None] sin = sin[None, None] cos, sin = cos.to(x.device), sin.to(x.device) x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None, rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None, *args, **kwargs, ) -> torch.Tensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj") if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if rotary_freqs_cis is not None: query = self.apply_rotary_emb(query, rotary_freqs_cis) if not attn.is_cross_attention: key = self.apply_rotary_emb(key, rotary_freqs_cis) elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj: key = self.apply_rotary_emb(key, rotary_freqs_cis_cross) if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj: # attention_mask: N x S1 # encoder_attention_mask: N x S2 # cross attention 整合attention_mask和encoder_attention_mask combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :] attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf) attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype) elif not attn.is_cross_attention and attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states