Diffusion80XX / app.py
charliebaby2023's picture
Update app.py
15b1858 verified
raw
history blame
6.92 kB
import gradio as gr
from random import randint
from all_models import models
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import time
import requests
now2 = 0
kii=" this is your prompt input window still a wip"
combined_prompt = ""
def get_current_time():
now = datetime.now()
now2 = now
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
ki = f'{kii} {current_time}'
return ki
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
print(f"{m}");
except Exception as error:
print(f"Error loading model {model}: {error}")
m = gr.Interface(lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(), enable_queue=False)
models_load.update({model: m})
load_fn(models)
num_models = len(models)
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
executor = ThreadPoolExecutor(max_workers=num_models)
def gen_fn(model_str, prompt):
if model_str == 'NA':
return None
noise = str(randint(0, 9999))
combined_prompt = f'{prompt}'
print(f"Generating with prompt: {combined_prompt}")
try:
image_response = models_load[model_str](f'{prompt} {noise}')
# print(f"77 {models_load[model_str](f'{combined_prompt}')}")
# image_response = models_load[model_str](f'{combined_prompt}')
# Ensure the response is an image or image-like object
if isinstance(image_response, gr.Image):
return image_response
elif isinstance(image_response, str): # If the response is a path or URL, pass it as a string
return gr.Image(image_response) # You can handle it based on your model's return type
else:
print(f"Unexpected response type: {type(image_response)}")
return None
except Exception as e:
print(f"Error occurred: {e}")
return None
def make_me():
with gr.Row():
txt_input = gr.Textbox(lines=2, value=kii, label=None)
gen_button = gr.Button('Generate images')
# stop_button = gr.Button('Stop', variant='secondary', interactive=False)
#gen_button.click(lambda _: gr.update(interactive=True), None, stop_button)
gen_button.click(lambda _: gr.update(interactive=True), None)
gr.HTML("""
<div style="text-align: center; max-width: 100%; margin: 0 auto;">
<body>
</body>
</div>
""")
with gr.Row():
output = [gr.Image(label=m) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o, queue=False)
with gr.Accordion('Model selection', visible=False):
model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
js_code = """
<script>
const originalScroll = window.scrollTo;
const originalShowToast = gradio.Toast.show;
gradio.Toast.show = function() {
originalShowToast.apply(this, arguments);
window.scrollTo = function() {};};
setTimeout(() => {
window.scrollTo = originalScroll;
}, 1000); // Restore scroll function after 3 seconds
</script>
"""
with gr.Blocks(css="""
label.float.svelte-i3tvor { top:auto!important; bottom: 0; position: absolute; background: rgba(0,0,0,0.0); left: var(--block-label-margin); color: rgba(200,200,200,.7);}
.genbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.stopbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}
textarea:hover { background:#55555555;}
textarea { overflow-y: scroll; top:0px; width: 100%; height:100%!important;
font-size: 1.5em;
letter-spacing: 3px;
color: limegreen;
border: none!important;
background: none;
outline: none !important; }
.svelte-5y6bt2 {max-height:161px;min-height:160px;}
.hide-container { max-height: 2px; position: fixed; min-height: 1px;}
.svelte-1gfkn6j {display:none;}
.gradio-container .gri-textbox .gri-input { border: none; padding: 0; background: transparent; box-shadow: none; }
.padded.svelte-5y6bt2:hover { border:1px solid cyan;}
.padded.svelte-5y6bt2 {
border: none;
background: none!important; padding: 0px!important; min-width:100%!important; max-width:101%!important;position:relative;right:0px;max-height:100%; }
.secondary.svelte-1137axg {
width: 200px;
flex: none!important;
position: relative;
min-width: 160px;
border: var(--button-border-width) solid
var(--button-secondary-border-color);
background: var(--button-secondary-background-fill);
color: var(--button-secondary-text-color);
box-shadow: var(--button-secondary-shadow);
left: 0px;
float: left;
}
div.svelte-633qhp {
/* display: flex; */
/* flex-direction: inherit; */
/* flex-wrap: wrap; */
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
height: 20px;
width: 250px;
position:fixed;
left:calc(50% - 100px);
flex: none!important;
/* border: var(--block-border-width) solid var(--block-border-color); */
/* border-radius: var(--block-radius); */
/* background: var(--border-color-primary); */
/* overflow-y: hidden; */
}
.form.svelte-633qhp{
height:50px;
width:auto!important;
z-index: 4000;
position: fixed;
flex: auto!important;
border: none!important;
background: none!important;
min-width: 30%!important;
min-height: 45px !important;
resize:both;
left: 50%;
transform: translate(-50%,0);
}
.input-container.svelte-11mx0st.svelte-11mx0st {
/* display: flex; */
top: 0px;
position: absolute;
align-items: flex-end;
bottom: 0px;
background: none;
border: none;
left: 0px;
right: 0px;
}
}
""") as demo:
gr.Markdown("<script>" + js_code + "</script>")
make_me()
demo.queue()
demo.queue = False
demo.config["queue"] = False
demo.launch(max_threads=200)