Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,17 @@ import gradio as gr
|
|
2 |
from random import randint
|
3 |
from all_models import models
|
4 |
from datetime import datetime
|
5 |
-
from concurrent.futures import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
import numpy as np
|
10 |
import time
|
11 |
import requests
|
|
|
|
|
12 |
now2 = 0
|
13 |
index_tracker = 0 # Index tracker for the current model
|
14 |
model_scores = {model: 0 for model in models} # Dictionary to track scores for each model
|
15 |
processed_models_count = 0
|
16 |
-
kii="
|
17 |
combined_prompt = ""
|
18 |
|
19 |
def get_current_time():
|
@@ -22,6 +21,18 @@ def get_current_time():
|
|
22 |
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
|
23 |
ki = f'{kii} {current_time}'
|
24 |
return ki
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def load_fn(models):
|
26 |
global models_load
|
27 |
models_load = {}
|
@@ -32,7 +43,7 @@ def load_fn(models):
|
|
32 |
print(f"{m}\n");
|
33 |
except Exception as error:
|
34 |
print(f"Error loading model {model}: {error}\n")
|
35 |
-
m = gr.Interface(lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(),
|
36 |
models_load.update({model: m})
|
37 |
|
38 |
|
@@ -44,38 +55,35 @@ def extend_choices(choices):
|
|
44 |
def update_imgbox(choices):
|
45 |
choices_plus = extend_choices(choices)
|
46 |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
47 |
-
executor = ThreadPoolExecutor(max_workers=num_models)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
|
|
|
|
53 |
|
54 |
|
55 |
def gen_fn(model_str, prompt):
|
56 |
-
global model_scores, processed_models_count
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
if model_str == 'NA':
|
62 |
return None
|
63 |
-
|
64 |
-
|
65 |
-
# current_model_index = None # Initialize `current_model_index` to avoid reference errors
|
66 |
-
|
67 |
try:
|
68 |
index_tracker = (index_tracker + 1) % len(models)
|
69 |
current_model_index = index_tracker
|
70 |
current_model_name = models[current_model_index]
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
if isinstance(response, gr.Image):
|
75 |
return response
|
76 |
elif isinstance(response, tuple):
|
77 |
return None
|
78 |
-
elif isinstance(response, str):
|
79 |
if processed_models_count == 0:
|
80 |
print(f"**************")
|
81 |
print(f"{prompt}")
|
@@ -91,27 +99,32 @@ def gen_fn(model_str, prompt):
|
|
91 |
processed_models_count = 0
|
92 |
return response
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
if processed_models_count == 0:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
print(f"--- n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
|
103 |
processed_models_count += 1
|
104 |
if processed_models_count == len(models):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
return None
|
109 |
|
110 |
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
|
116 |
|
117 |
def make_me():
|
@@ -129,7 +142,7 @@ def make_me():
|
|
129 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
130 |
for m, o in zip(current_models, output):
|
131 |
gen_event = gen_button.click(gen_fn, [m, txt_input], o, queue=False)
|
132 |
-
|
133 |
|
134 |
|
135 |
with gr.Accordion('Model selection', visible=False):
|
@@ -160,35 +173,8 @@ textarea{ position: absolute; font-size: 1em !important; padding: 4px;
|
|
160 |
gr.Markdown("<script>" + js_code + "</script>")
|
161 |
make_me()
|
162 |
|
|
|
163 |
demo.queue()
|
164 |
demo.queue = False
|
165 |
demo.config["queue"] = False
|
166 |
-
demo.launch(max_threads=
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
2 |
from random import randint
|
3 |
from all_models import models
|
4 |
from datetime import datetime
|
5 |
+
from concurrent.futures import TimeoutError, ThreadPoolExecutor
|
|
|
|
|
|
|
6 |
import numpy as np
|
7 |
import time
|
8 |
import requests
|
9 |
+
import logging
|
10 |
+
logging.basicConfig(level=logging.WARNING)
|
11 |
now2 = 0
|
12 |
index_tracker = 0 # Index tracker for the current model
|
13 |
model_scores = {model: 0 for model in models} # Dictionary to track scores for each model
|
14 |
processed_models_count = 0
|
15 |
+
kii=" this is your prompt input window still a wip"
|
16 |
combined_prompt = ""
|
17 |
|
18 |
def get_current_time():
|
|
|
21 |
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
|
22 |
ki = f'{kii} {current_time}'
|
23 |
return ki
|
24 |
+
|
25 |
+
|
26 |
+
# Sanitize file names and truncate them
|
27 |
+
def sanitize_file_name(file_name, max_length=100):
|
28 |
+
"""Shortens and removes unsafe characters from file name."""
|
29 |
+
file_name = file_name[:max_length]
|
30 |
+
return file_name.replace(" ", "_").replace("/", "_")
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
def load_fn(models):
|
37 |
global models_load
|
38 |
models_load = {}
|
|
|
43 |
print(f"{m}\n");
|
44 |
except Exception as error:
|
45 |
print(f"Error loading model {model}: {error}\n")
|
46 |
+
m = gr.Interface(lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(), queue=False)
|
47 |
models_load.update({model: m})
|
48 |
|
49 |
|
|
|
55 |
def update_imgbox(choices):
|
56 |
choices_plus = extend_choices(choices)
|
57 |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
|
60 |
+
executor = ThreadPoolExecutor(max_workers=num_models)
|
61 |
|
62 |
|
63 |
def gen_fn(model_str, prompt):
|
64 |
+
global index_tracker, model_scores, processed_models_count
|
|
|
|
|
|
|
|
|
65 |
if model_str == 'NA':
|
66 |
return None
|
67 |
+
|
68 |
+
|
|
|
|
|
69 |
try:
|
70 |
index_tracker = (index_tracker + 1) % len(models)
|
71 |
current_model_index = index_tracker
|
72 |
current_model_name = models[current_model_index]
|
73 |
+
|
74 |
+
max_prompt_length = 100
|
75 |
+
truncated_prompt = sanitize_file_name(prompt[:max_prompt_length])
|
76 |
+
combined_prompt = f"{truncated_prompt}_{randint(0, 9999)}"
|
77 |
+
|
78 |
+
# Execute the model's processing with a timeout
|
79 |
+
future = executor.submit(models_load[model_str], f"{combined_prompt}")
|
80 |
+
response = future.result(timeout=100) # Wait for result with timeout
|
81 |
+
|
82 |
if isinstance(response, gr.Image):
|
83 |
return response
|
84 |
elif isinstance(response, tuple):
|
85 |
return None
|
86 |
+
elif isinstance(response, str):
|
87 |
if processed_models_count == 0:
|
88 |
print(f"**************")
|
89 |
print(f"{prompt}")
|
|
|
99 |
processed_models_count = 0
|
100 |
return response
|
101 |
|
102 |
+
except TimeoutError:
|
103 |
+
print(f"TimeoutError: Model '{model_str}' did not respond within {timeout_limit} seconds.")
|
104 |
+
processed_models_count += 1
|
105 |
+
if processed_models_count == len(models):
|
106 |
+
print("\nCycle Complete! Updated Scores:")
|
107 |
+
print(model_scores)
|
108 |
+
processed_models_count = 0
|
109 |
+
return None
|
110 |
+
|
111 |
except Exception as e:
|
112 |
if processed_models_count == 0:
|
113 |
+
print(f"**************")
|
114 |
+
print(f"{prompt}")
|
115 |
+
print(f"{prompt}")
|
116 |
+
print(f"{prompt}")
|
117 |
+
print(f"**************")
|
118 |
print(f"--- n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
|
119 |
processed_models_count += 1
|
120 |
if processed_models_count == len(models):
|
121 |
+
print("\nCycle Complete! Updated Scores:")
|
122 |
+
print(model_scores)
|
123 |
+
processed_models_count = 0
|
124 |
return None
|
125 |
|
126 |
|
|
|
|
|
127 |
|
|
|
128 |
|
129 |
|
130 |
def make_me():
|
|
|
142 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
143 |
for m, o in zip(current_models, output):
|
144 |
gen_event = gen_button.click(gen_fn, [m, txt_input], o, queue=False)
|
145 |
+
stop_button.click(lambda _: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
|
146 |
|
147 |
|
148 |
with gr.Accordion('Model selection', visible=False):
|
|
|
173 |
gr.Markdown("<script>" + js_code + "</script>")
|
174 |
make_me()
|
175 |
|
176 |
+
|
177 |
demo.queue()
|
178 |
demo.queue = False
|
179 |
demo.config["queue"] = False
|
180 |
+
demo.launch(max_threads=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|