Spaces:
Running
Running
Update app/rag.py
Browse files- app/rag.py +18 -27
app/rag.py
CHANGED
@@ -4,8 +4,7 @@ from llama_index.core import (
|
|
4 |
SimpleDirectoryReader,
|
5 |
VectorStoreIndex,
|
6 |
StorageContext,
|
7 |
-
Settings
|
8 |
-
get_response_synthesizer)
|
9 |
from llama_index.core.node_parser import SentenceSplitter
|
10 |
from llama_index.core.schema import TextNode, MetadataMode
|
11 |
from llama_index.core.vector_stores import VectorStoreQuery
|
@@ -20,6 +19,8 @@ store_dir = os.path.expanduser("~/wtp_be_store/")
|
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
|
|
23 |
class ChatPDF:
|
24 |
pdf_count = 0
|
25 |
text_chunks = []
|
@@ -33,33 +34,26 @@ class ChatPDF:
|
|
33 |
self.client = QdrantClient(path=store_dir)
|
34 |
self.vector_store = QdrantVectorStore(
|
35 |
client=self.client,
|
36 |
-
collection_name="rag_documents"
|
37 |
-
# enable_hybrid=True
|
38 |
)
|
39 |
|
40 |
logger.info("initializing the FastEmbedEmbedding")
|
41 |
-
self.embed_model = FastEmbedEmbedding(
|
42 |
-
# model_name="BAAI/bge-small-en"
|
43 |
-
)
|
44 |
|
45 |
llm = LlamaCPP(
|
46 |
-
model_url=
|
47 |
temperature=0.1,
|
|
|
48 |
max_new_tokens=256,
|
49 |
-
|
50 |
-
|
51 |
-
# completion_to_prompt=self.completion_to_prompt,
|
52 |
verbose=True,
|
53 |
)
|
54 |
|
55 |
-
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
56 |
-
# tokenizer.save_pretrained("./models/tokenizer/")
|
57 |
-
|
58 |
logger.info("initializing the global settings")
|
59 |
Settings.text_splitter = self.text_parser
|
60 |
Settings.embed_model = self.embed_model
|
61 |
Settings.llm = llm
|
62 |
-
# Settings.tokenzier = tokenizer
|
63 |
Settings.transformations = [self.text_parser]
|
64 |
|
65 |
def ingest(self, files_dir: str):
|
@@ -73,10 +67,8 @@ class ChatPDF:
|
|
73 |
self.doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
74 |
|
75 |
logger.info("enumerating text_chunks")
|
76 |
-
for
|
77 |
node = TextNode(text=text_chunk)
|
78 |
-
# src_doc = docs[self.doc_ids[idx]]
|
79 |
-
# node.metadata = src_doc.metadata
|
80 |
if node.get_content(metadata_mode=MetadataMode.EMBED):
|
81 |
self.nodes.append(node)
|
82 |
|
@@ -93,7 +85,7 @@ class ChatPDF:
|
|
93 |
index = VectorStoreIndex(
|
94 |
nodes=self.nodes,
|
95 |
storage_context=storage_context,
|
96 |
-
transformations=Settings.transformations
|
97 |
)
|
98 |
|
99 |
self.query_engine = index.as_query_engine(
|
@@ -103,14 +95,13 @@ class ChatPDF:
|
|
103 |
|
104 |
def ask(self, query: str):
|
105 |
logger.info("retrieving the response to the query")
|
106 |
-
streaming_response = self.query_engine.query(
|
|
|
107 |
return streaming_response
|
108 |
|
109 |
def clear(self):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
self.doc_ids = []
|
116 |
-
self.nodes = []
|
|
|
4 |
SimpleDirectoryReader,
|
5 |
VectorStoreIndex,
|
6 |
StorageContext,
|
7 |
+
Settings)
|
|
|
8 |
from llama_index.core.node_parser import SentenceSplitter
|
9 |
from llama_index.core.schema import TextNode, MetadataMode
|
10 |
from llama_index.core.vector_stores import VectorStoreQuery
|
|
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
model_url = "https://huggingface.co/Qwen/Qwen2-0.5B-Instruct-GGUF/resolve/main/qwen2-0_5b-instruct-q4_k_m.gguf"
|
23 |
+
|
24 |
class ChatPDF:
|
25 |
pdf_count = 0
|
26 |
text_chunks = []
|
|
|
34 |
self.client = QdrantClient(path=store_dir)
|
35 |
self.vector_store = QdrantVectorStore(
|
36 |
client=self.client,
|
37 |
+
collection_name="rag_documents"
|
|
|
38 |
)
|
39 |
|
40 |
logger.info("initializing the FastEmbedEmbedding")
|
41 |
+
self.embed_model = FastEmbedEmbedding()
|
|
|
|
|
42 |
|
43 |
llm = LlamaCPP(
|
44 |
+
model_url=model_url,
|
45 |
temperature=0.1,
|
46 |
+
model_path=None,
|
47 |
max_new_tokens=256,
|
48 |
+
context_window=29440,
|
49 |
+
generate_kwargs={},
|
|
|
50 |
verbose=True,
|
51 |
)
|
52 |
|
|
|
|
|
|
|
53 |
logger.info("initializing the global settings")
|
54 |
Settings.text_splitter = self.text_parser
|
55 |
Settings.embed_model = self.embed_model
|
56 |
Settings.llm = llm
|
|
|
57 |
Settings.transformations = [self.text_parser]
|
58 |
|
59 |
def ingest(self, files_dir: str):
|
|
|
67 |
self.doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
68 |
|
69 |
logger.info("enumerating text_chunks")
|
70 |
+
for text_chunk in self.text_chunks:
|
71 |
node = TextNode(text=text_chunk)
|
|
|
|
|
72 |
if node.get_content(metadata_mode=MetadataMode.EMBED):
|
73 |
self.nodes.append(node)
|
74 |
|
|
|
85 |
index = VectorStoreIndex(
|
86 |
nodes=self.nodes,
|
87 |
storage_context=storage_context,
|
88 |
+
transformations=Settings.transformations
|
89 |
)
|
90 |
|
91 |
self.query_engine = index.as_query_engine(
|
|
|
95 |
|
96 |
def ask(self, query: str):
|
97 |
logger.info("retrieving the response to the query")
|
98 |
+
streaming_response = self.query_engine.query("You are an assistant for question-answering tasks. Use three \
|
99 |
+
sentences only and keep the answer concise.\n\n" + query)
|
100 |
return streaming_response
|
101 |
|
102 |
def clear(self):
|
103 |
+
self.vector_store.clear()
|
104 |
+
self.pdf_count = 0
|
105 |
+
self.text_chunks = []
|
106 |
+
self.doc_ids = []
|
107 |
+
self.nodes = []
|
|
|
|