wechat-ner-re / mcp_use.py
chen666-666's picture
Upload 2 files
b99a17e verified
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), 'relation-extraction-master'))
import re
import torch
from gqlalchemy import Memgraph
from relation_extraction.hparams import hparams
from relation_extraction.model import SentenceRE
from relation_extraction.data_utils import MyTokenizer, get_idx2tag, convert_pos_to_mask
# 云端Memgraph连接参数
MEMGRAPH_HOST = '18.159.132.161'
MEMGRAPH_PORT = 7687
MEMGRAPH_USERNAME = '[email protected]'
MEMGRAPH_PASSWORD = '159951Tjk.' # 请替换为你的真实密码
MEMGRAPH_ENCRYPTED = True
# 连接memgraph云数据库
def get_memgraph_conn():
return Memgraph(
MEMGRAPH_HOST,
MEMGRAPH_PORT,
MEMGRAPH_USERNAME,
MEMGRAPH_PASSWORD,
encrypted=MEMGRAPH_ENCRYPTED
)
# 单句预测,返回三元组
class RelationPredictor:
def __init__(self, hparams):
self.device = hparams.device
torch.manual_seed(hparams.seed)
self.idx2tag = get_idx2tag(hparams.tagset_file)
hparams.tagset_size = len(self.idx2tag)
self.model = SentenceRE(hparams).to(self.device)
self.model.load_state_dict(torch.load(hparams.model_file))
self.model.eval()
self.tokenizer = MyTokenizer(hparams.pretrained_model_path)
def predict_one(self, text, entity1, entity2):
match_obj1 = re.search(entity1, text)
match_obj2 = re.search(entity2, text)
if not (match_obj1 and match_obj2):
return None
e1_pos = match_obj1.span()
e2_pos = match_obj2.span()
item = {
'h': {'name': entity1, 'pos': e1_pos},
't': {'name': entity2, 'pos': e2_pos},
'text': text
}
tokens, pos_e1, pos_e2 = self.tokenizer.tokenize(item)
encoded = self.tokenizer.bert_tokenizer.batch_encode_plus([(tokens, None)], return_tensors='pt')
input_ids = encoded['input_ids'].to(self.device)
token_type_ids = encoded['token_type_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
e1_mask = torch.tensor([convert_pos_to_mask(pos_e1, max_len=attention_mask.shape[1])]).to(self.device)
e2_mask = torch.tensor([convert_pos_to_mask(pos_e2, max_len=attention_mask.shape[1])]).to(self.device)
with torch.no_grad():
logits = self.model(input_ids, token_type_ids, attention_mask, e1_mask, e2_mask)[0]
logits = logits.to(torch.device('cpu'))
relation = self.idx2tag[logits.argmax(0).item()]
return entity1, relation, entity2
# 写入memgraph
def insert_to_memgraph(memgraph, entity1, relation, entity2):
memgraph.execute(
"MERGE (a:Entity {name: $name1})",
{"name1": entity1}
)
memgraph.execute(
"MERGE (b:Entity {name: $name2})",
{"name2": entity2}
)
memgraph.execute(
f"MATCH (a:Entity {{name: $name1}}), (b:Entity {{name: $name2}}) MERGE (a)-[:{relation}]->(b)",
{"name1": entity1, "name2": entity2}
)
# 主流程
def main():
memgraph = get_memgraph_conn()
predictor = RelationPredictor(hparams)
print("请输入句子和两个实体,识别关系并写入Memgraph。输入exit退出。")
while True:
text = input("输入中文句子:")
if text.strip().lower() == 'exit':
break
entity1 = input("句子中的实体1:")
if entity1.strip().lower() == 'exit':
break
entity2 = input("句子中的实体2:")
if entity2.strip().lower() == 'exit':
break
result = predictor.predict_one(text, entity1, entity2)
if result is None:
print("实体未在句子中找到,请重试。")
continue
entity1, relation, entity2 = result
insert_to_memgraph(memgraph, entity1, relation, entity2)
print(f"已写入Memgraph:({entity1})-[:{relation}]->({entity2})")
if __name__ == '__main__':
main()