Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,105 Bytes
9bc4638 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# @package _global_
# Model
model:
_target_: sam2.modeling.sam2_base.SAM2Base
image_encoder:
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
scalp: 1
trunk:
_target_: sam2.modeling.backbones.timm.TimmBackbone
name: repvit_m1.dist_in1k
features:
- layer0
- layer1
- layer2
- layer3
neck:
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
position_encoding:
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
num_pos_feats: 256
normalize: true
scale: null
temperature: 10000
d_model: 256
backbone_channel_list: [384, 192, 96, 48]
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
fpn_interp_model: nearest
memory_attention:
_target_: sam2.modeling.memory_attention.MemoryAttention
d_model: 256
pos_enc_at_input: true
layer:
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
activation: relu
dim_feedforward: 2048
dropout: 0.1
pos_enc_at_attn: false
self_attention:
_target_: sam2.modeling.sam.transformer.RoPEAttention
rope_theta: 10000.0
feat_sizes: [32, 32]
embedding_dim: 256
num_heads: 1
downsample_rate: 1
dropout: 0.1
d_model: 256
pos_enc_at_cross_attn_keys: true
pos_enc_at_cross_attn_queries: false
cross_attention:
_target_: sam2.modeling.sam.transformer.RoPEAttentionv2
rope_theta: 10000.0
q_sizes: [64, 64]
k_sizes: [16, 16]
embedding_dim: 256
num_heads: 1
downsample_rate: 1
dropout: 0.1
kv_in_dim: 64
num_layers: 2
memory_encoder:
_target_: sam2.modeling.memory_encoder.MemoryEncoder
out_dim: 64
position_encoding:
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
num_pos_feats: 64
normalize: true
scale: null
temperature: 10000
mask_downsampler:
_target_: sam2.modeling.memory_encoder.MaskDownSampler
kernel_size: 3
stride: 2
padding: 1
fuser:
_target_: sam2.modeling.memory_encoder.Fuser
layer:
_target_: sam2.modeling.memory_encoder.CXBlock
dim: 256
kernel_size: 7
padding: 3
layer_scale_init_value: 1e-6
use_dwconv: True # depth-wise convs
num_layers: 2
spatial_perceiver:
_target_: sam2.modeling.perceiver.PerceiverResampler
depth: 2
dim: 64
dim_head: 64
heads: 1
ff_mult: 4
hidden_dropout_p: 0.
attention_dropout_p: 0.
pos_enc_at_key_value: true # implicit pos
concat_kv_latents: false
num_latents: 256
num_latents_2d: 256
position_encoding:
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
num_pos_feats: 64
normalize: true
scale: null
temperature: 10000
use_self_attn: true
num_maskmem: 7
image_size: 1024
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
sigmoid_scale_for_mem_enc: 20.0
sigmoid_bias_for_mem_enc: -10.0
use_mask_input_as_output_without_sam: true
# Memory
directly_add_no_mem_embed: true
# use high-resolution feature map in the SAM mask decoder
use_high_res_features_in_sam: true
# output 3 masks on the first click on initial conditioning frames
multimask_output_in_sam: true
# SAM heads
iou_prediction_use_sigmoid: True
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
use_obj_ptrs_in_encoder: true
add_tpos_enc_to_obj_ptrs: false
only_obj_ptrs_in_the_past_for_eval: true
# object occlusion prediction
pred_obj_scores: true
pred_obj_scores_mlp: true
fixed_no_obj_ptr: true
# multimask tracking settings
multimask_output_for_tracking: true
use_multimask_token_for_obj_ptr: true
multimask_min_pt_num: 0
multimask_max_pt_num: 1
use_mlp_for_obj_ptr_proj: true
# Compilation flag
compile_image_encoder: false |