Spaces:
Sleeping
Sleeping
import re | |
import gradio as gr | |
import nltk | |
import torch | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
nltk.download("punkt") | |
nltk.download("punkt_tab") | |
def pred_slonspell(input_text: str): | |
return_values = [] | |
input_text = re.sub(r"(\n)+|( ){2,}", " ", input_text) | |
input_sentences = nltk.sent_tokenize(input_text, language="slovene") | |
for _sent in input_sentences: | |
input_words = nltk.word_tokenize(_sent, language="slovene") | |
formatted_text = " <mask> ".join(input_words) | |
formatted_text = f"{formatted_text} <mask>" | |
encoded_input = tokenizer(formatted_text, return_tensors="pt", max_length=512, truncation=True) | |
mask_positions = encoded_input["input_ids"] == tokenizer.mask_token_id # bool tensor | |
with torch.no_grad(): | |
logits = model(**{k: v.to(DEVICE) for k, v in encoded_input.items()}).logits[:, :, [0, 1, 2, 3]].cpu() | |
probas = torch.softmax(logits, dim=-1)[0] | |
relevant_probas = probas[mask_positions[0]] # [num_words, 4] | |
is_ok_proba = relevant_probas[:, [0]] | |
is_err_proba = torch.sum(relevant_probas[:, 1:], dim=1, keepdim=True) | |
binary_probas = torch.hstack((is_ok_proba, is_err_proba)) | |
preds = torch.argmax(binary_probas, dim=-1).tolist() | |
# pred_label_probas = binary_probas[torch.arange(len(preds)), preds] | |
return_values.extend( | |
[(_word, "error" if preds[_idx_word] else None) for _idx_word, _word in enumerate(input_words)] | |
) | |
return return_values | |
_description = """\ | |
<h1> SloNSpell demo</h1> | |
<p>This is a simple demo setup for SloNSpell, a 🇸🇮 Slovene spelling error detection model. | |
You can find more about the model in the model card <a href='https://huggingface.co/cjvt/SloBERTa-slo-word-spelling-annotator'>\ | |
cjvt/SloBERTa-slo-word-spelling-annotator</a>.</p> | |
<p>Given an input text: </p> | |
<p>1. The input is segmented into sentences and tokenized using NLTK to prepare the model input.</p> | |
<p>2. The model makes predictions on the sentence level. </p> | |
<b>The model does not work perfectly and can make mistakes, please check the output!</b> | |
""" | |
demo = gr.Interface( | |
pred_slonspell, | |
gr.Textbox( | |
label="Input text", | |
info="The text that you want to run through the SloNSpell spell-checking model.", | |
lines=3, | |
value="Model vbesedilu o znači besede, v katerih se najajajo napake.", | |
), | |
gr.HighlightedText( | |
label="Spell-checking prediction", | |
show_legend=True, | |
color_map={"error": "red"}), | |
theme=gr.themes.Base(), | |
description=_description, | |
allow_flagging="never" # RIP flagging to HuggingFace dataset | |
) | |
if __name__ == "__main__": | |
model_name = "cjvt/SloBERTa-slo-word-spelling-annotator" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
model = AutoModelForMaskedLM.from_pretrained(model_name) | |
mask_token = tokenizer.mask_token | |
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
demo.launch() | |