cmcs-prompting / app.py
cmgchess's picture
req
a07131b
import gradio as gr
import torch
import numpy as np
import pandas as pd
import copy
import torch.nn.functional as F
from collections import defaultdict
from openprompt import PromptDataLoader, PromptForClassification
from openprompt.data_utils import InputExample
from openprompt.prompts import MixedTemplate, SoftVerbalizer
from transformers import AdamW, get_linear_schedule_with_warmup, XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaModel, XLMRobertaForMaskedLM, set_seed, AdapterConfig
from openprompt.plms.utils import TokenizerWrapper
import re
def check_only_numbers(string):
return string.isdigit()
def remove_symbols_and_numbers(string):
pattern = r"[-()\"#/@;:<>{}`+=~|_▁.!?,1234567890]"
clean_string = re.sub(pattern, '', string)
return clean_string
def is_sinhala(char):
# https://unicode.org/charts/PDF/U0D80.pdf
return ord(char) >= 0x0D80 and ord(char) <= 0x0DFF
def get_chars(word, without_si_modifiers = True):
mods = [0x0DCA,0x0DCF,0x0DD0,0x0DD1,0x0DD2,0x0DD3,0x0DD4,0x0DD5,0x0DD6,0x0DD7,0x0DD8,0x0DD9,0x0DDA,0x0DDB,0x0DDC,0x0DDD,0x0DDE,0x0DDF,0x0DF2,0x0DF3]
if without_si_modifiers:
return [char for char in list(word) if ord(char) not in mods]
else:
return list(word)
def script_classify(text,en_thresh,si_thresh,without_si_mods):
script = ""
tokens = text.split()
total_chars = 0
latin_char_count = 0
sin_char_count = 0
for t_i,t in enumerate(tokens):
if check_only_numbers(t):
continue
token_list = get_chars(remove_symbols_and_numbers(t),without_si_modifiers = without_si_mods)
token_len = len(token_list)
total_chars += token_len
for ch in token_list:
if is_sinhala(ch):
sin_char_count += 1
else:
latin_char_count += 1
if total_chars == 0:
script = 'Symbol'
else:
en_percentage = latin_char_count/total_chars
si_percentage = sin_char_count/total_chars
if en_percentage >= en_thresh:
script = 'Latin'
elif si_percentage >= si_thresh:
script = 'Sinhala'
elif en_percentage < en_thresh and si_percentage < si_thresh:
script = 'Mixed'
return script
HUMOUR_MODEL_PATH = 'ad-houlsby-humour-seed-42.ckpt'
SENTIMENT_MODEL_PATH = 'ad-drop-houlsby-11-sentiment-seed-42.ckpt'
humour_mapping = {
0: "Non-humourous",
1:"Humourous"
}
sentiment_mapping = {
0: "Negative",
1:"Neutral",
2:"Positive",
3:"Conflict"
}
def load_plm(model_name, model_path):
model_config = XLMRobertaConfig.from_pretrained(model_path)
model = XLMRobertaForMaskedLM.from_pretrained(model_path, config=model_config)
tokenizer = XLMRobertaTokenizer.from_pretrained(model_path)
wrapper = MLMTokenizerWrapper
return model, tokenizer, wrapper
class MLMTokenizerWrapper(TokenizerWrapper):
add_input_keys = ['input_ids', 'attention_mask', 'token_type_ids']
@property
def mask_token(self):
return self.tokenizer.mask_token
@property
def mask_token_ids(self):
return self.tokenizer.mask_token_id
@property
def num_special_tokens_to_add(self):
if not hasattr(self, '_num_specials'):
self._num_specials = self.tokenizer.num_special_tokens_to_add()
return self._num_specials
def tokenize_one_example(self, wrapped_example, teacher_forcing):
wrapped_example, others = wrapped_example
encoded_tgt_text = []
if 'tgt_text' in others:
tgt_text = others['tgt_text']
if isinstance(tgt_text, str):
tgt_text = [tgt_text]
for t in tgt_text:
encoded_tgt_text.append(self.tokenizer.encode(t, add_special_tokens=False))
mask_id = 0 # the i-th the mask token in the template.
encoder_inputs = defaultdict(list)
for piece in wrapped_example:
if piece['loss_ids']==1:
if teacher_forcing: # fill the mask with the tgt task
raise RuntimeError("Masked Language Model can't perform teacher forcing training!")
else:
encode_text = [self.mask_token_ids]
mask_id += 1
if piece['text'] in self.special_tokens_maps.keys():
to_replace = self.special_tokens_maps[piece['text']]
if to_replace is not None:
piece['text'] = to_replace
else:
raise KeyError("This tokenizer doesn't specify {} token.".format(piece['text']))
if 'soft_token_ids' in piece and piece['soft_token_ids']!=0:
encode_text = [0] # can be replace by any token, since these token will use their own embeddings
else:
encode_text = self.tokenizer.encode(piece['text'], add_special_tokens=False)
encoding_length = len(encode_text)
encoder_inputs['input_ids'].append(encode_text)
for key in piece:
if key not in ['text']:
encoder_inputs[key].append([piece[key]]*encoding_length)
encoder_inputs = self.truncate(encoder_inputs=encoder_inputs)
# delete shortenable ids
encoder_inputs.pop("shortenable_ids")
encoder_inputs = self.concate_parts(input_dict=encoder_inputs)
encoder_inputs = self.add_special_tokens(encoder_inputs=encoder_inputs)
# create special input ids
encoder_inputs['attention_mask'] = [1] *len(encoder_inputs['input_ids'])
if self.create_token_type_ids:
encoder_inputs['token_type_ids'] = [0] *len(encoder_inputs['input_ids'])
# padding
encoder_inputs = self.padding(input_dict=encoder_inputs, max_len=self.max_seq_length, pad_id_for_inputs=self.tokenizer.pad_token_id)
if len(encoded_tgt_text) > 0:
encoder_inputs = {**encoder_inputs, "encoded_tgt_text": encoded_tgt_text}# convert defaultdict to dict
else:
encoder_inputs = {**encoder_inputs}
return encoder_inputs
plm, tokenizer, wrapper_class = load_plm("xlm", "xlm-roberta-base")
plm_copy = copy.deepcopy(plm)
tokenizer_copy = copy.deepcopy(tokenizer)
wrapper_class_copy = copy.deepcopy(wrapper_class)
sent_adapter_name = "Task_Sentiment"
sent_adapter_config = AdapterConfig.load("houlsby")
sent_adapter_config.leave_out.extend([11])
plm.add_adapter(sent_adapter_name, config=sent_adapter_config)
plm.set_active_adapters(sent_adapter_name)
plm.train_adapter(sent_adapter_name)
sent_template = '{"placeholder": "text_a"}. {"soft": "The"} {"soft": "sentiment"} {"soft": "or"} {"soft": "the"} {"soft": "feeling"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "can"} {"soft": "be"} {"soft": "classified"} {"soft": "as"} {"soft": "positive"} {"soft": ","} {"soft": "negative"} {"soft": "or"} {"soft": "neutral"} {"soft": "."} {"soft": "The"} {"soft": "classified"} {"soft": "sentiment"} {"soft": "of"} {"soft": "the"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
sent_promptTemplate = MixedTemplate(model=plm, text = sent_template, tokenizer = tokenizer)
sent_promptVerbalizer = SoftVerbalizer(tokenizer, plm, num_classes=4)
sent_promptModel = PromptForClassification(template = sent_promptTemplate, plm = plm, verbalizer = sent_promptVerbalizer)
sent_promptModel.load_state_dict(torch.load(SENTIMENT_MODEL_PATH,map_location=torch.device('cpu')))
sent_promptModel.eval()
hum_adapter_name = "Ad_Humour"
hum_adapter_config = AdapterConfig.load("houlsby")
plm_copy.add_adapter(hum_adapter_name, config=hum_adapter_config)
plm_copy.set_active_adapters(hum_adapter_name)
plm_copy.train_adapter(hum_adapter_name)
hum_template = '{"placeholder": "text_a"}. {"soft": "Capture"} {"soft": "the"} {"soft": "comedic"} {"soft": "elements"} {"soft": "of"} {"soft": "the"} {"soft": "given"} {"soft": "sentence"} {"soft": "and"} {"soft": "classify"} {"soft": "as"} {"soft": "Humorous"} {"soft": ","} {"soft": "otherwise"} {"soft": "classify"} {"soft": "as"} {"soft": "Non-humorous"} {"soft": "."} {"soft": "The"} {"soft": "sentence"} {"soft": "is"} {"mask"}.'
hum_promptTemplate = MixedTemplate(model=plm_copy, text = hum_template, tokenizer = tokenizer_copy)
hum_promptVerbalizer = SoftVerbalizer(tokenizer_copy, plm_copy, num_classes=2)
hum_promptModel = PromptForClassification(template = hum_promptTemplate, plm = plm_copy, verbalizer = hum_promptVerbalizer)
hum_promptModel.load_state_dict(torch.load(HUMOUR_MODEL_PATH,map_location=torch.device('cpu')))
hum_promptModel.eval()
def sentiment(text):
pred = None
dataset = [
InputExample(
guid = 0,
text_a = text,
)
]
data_loader = PromptDataLoader(
dataset = dataset,
tokenizer = tokenizer,
template = sent_promptTemplate,
tokenizer_wrapper_class=wrapper_class,
)
for step, inputs in enumerate(data_loader):
logits = sent_promptModel(inputs)
pred = sentiment_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
return pred
def humour(text):
pred = None
dataset = [
InputExample(
guid = 0,
text_a = text,
)
]
data_loader = PromptDataLoader(
dataset = dataset,
tokenizer = tokenizer_copy,
template = hum_promptTemplate,
tokenizer_wrapper_class=wrapper_class_copy,
)
for step, inputs in enumerate(data_loader):
logits = hum_promptModel(inputs)
pred = humour_mapping[torch.argmax(logits, dim=-1).cpu().tolist()[0]]
return pred
def classifier(text, task):
one_script = script_classify(text,1.0,1.0,True)
pointnine_script = script_classify(text,0.9,0.9,True)
if task == "Sentiment Classification":
return sentiment(text),one_script, pointnine_script
elif task == "Humour Detection":
return humour(text),one_script, pointnine_script
demo = gr.Interface(
title="Use of Prompt-Based Learning For Code-Mixed Text Classification",
fn=classifier,
inputs=[
gr.Textbox(placeholder="Enter an input sentence...",label="Input Sentence"),
gr.Radio(["Sentiment Classification", "Humour Detection"], label="Task")
],
outputs=[
gr.Label(label="Label"),
gr.Textbox(label="Script Threshold 100%"),
gr.Textbox(label="Script Threshold 90%")
],
allow_flagging = "never",
examples=[
["Mama kamathi cricket matches balanna", "Sentiment Classification"],
["මම sweet food වලට කැමති නෑ", "Sentiment Classification"],
["The weather outside is neither too hot nor too cold", "Sentiment Classification"],
["ඉබ්බයි හාවයි හොඳ යාලුවොලු", "Humour Detection"],
["Kandy ගොඩක් lassanai", "Humour Detection"]
])
demo.launch()