import torch from diffusers import StableDiffusion3Pipeline import gradio as gr import os import transformers from transformers import T5Tokenizer, T5ForConditionalGeneration from huggingface_hub import snapshot_download import spaces HF_TOKEN = os.getenv("HF_TOKEN") if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") # download sd3 medium weights model_path = snapshot_download( repo_id="stabilityai/stable-diffusion-3-medium", revision="refs/pr/26", repo_type="model", ignore_patterns=["*.md", "*..gitattributes"], local_dir="stable-diffusion-3-medium", token=HF_TOKEN, ) # Initialize the pipeline and download the model pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) pipe.to(device) # superprompt-v1 tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1") model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto") model.to(device) # Define the image generation function @spaces.GPU(duration=60 * 2) def generate_image(prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt): if seed == 0: seed = random.randint(1, 2**32-1) if enhance_prompt: transformers.set_seed(seed) input_text = f"Expand the following prompt to add more detail: {prompt}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) outputs = model.generate( input_ids, max_new_tokens=512, repetition_penalty=1.2, do_sample=True, temperature=0.7, top_p=1, top_k=50 ) prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) generator = torch.Generator().manual_seed(seed) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=num_images_per_prompt ).images return output # Create the Gradio interface prompt = gr.Textbox(label="Prompt", info="Describe the image you want", placeholder="A cat...") enhance_prompt = gr.Checkbox(label="Prompt Enhancement", info="Enhance your prompt with SuperPrompt-v1", value=True) negative_prompt = gr.Textbox(label="Negative Prompt", info="Describe what you don't want in the image", placeholder="Ugly, bad anatomy...") num_inference_steps = gr.Number(label="Number of Inference Steps", precision=0, value=25) height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum="1536", step=32, value=1024) width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum="1536", step=32, value=1024) guidance_scale = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") num_images_per_prompt = gr.Slider(label="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1) interface = gr.Interface( fn=generate_image, inputs=[prompt, enhance_prompt, negative_prompt, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], outputs=gr.Gallery(label="Generated AI Images", elem_id="gallery", show_label=False), title="Stable Diffusion 3 Medium", description="Made by Nick088 \n Join https://discord.gg/osai to talk about Open Source AI" ) # Launch the interface interface.launch(share = False)