File size: 6,931 Bytes
6ca6607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from IPython.display import display, JSON
import matplotlib.pyplot as plt
from speciesnet import DEFAULT_MODEL, SUPPORTED_MODELS, SpeciesNet
import numpy as np
import time
import gradio as gr
import json
import cv2
import os


# ------------------------------------------------------
#   LOAD MODEL
# ------------------------------------------------------
print("Default SpeciesNet model:", DEFAULT_MODEL)
print("Supported SpeciesNet models:", SUPPORTED_MODELS)
model = SpeciesNet(DEFAULT_MODEL)



# ------------------------------------------------------
#   VALIDATION FUNCTIONS
# ------------------------------------------------------
def validate_predictions_structure(pred):
    """
    Validate internal structure for both detection and classification.
    This ensures correct keys exist and formats are valid.
    """

    required_keys = ["filepath", "detections", "classifications"]

    for key in required_keys:
        if key not in pred:
            raise ValueError(f" Missing key '{key}' in prediction block")

    # --- Validate detections (list of dicts) ---
    if not isinstance(pred["detections"], list):
        raise ValueError(" detections must be a list")

    for det in pred["detections"]:
        if not all(k in det for k in ["bbox", "conf", "label"]):
            raise ValueError(" Each detection must contain bbox, conf, label")

        if len(det["bbox"]) != 4:
            raise ValueError(" bbox must be [x, y, w, h]")

    # --- Validate classifications ---
    cls = pred["classifications"]
    if not isinstance(cls, dict):
        raise ValueError(" classifications must be a dictionary")

    for key in ["classes", "scores"]:
        if key not in cls:
            raise ValueError(f" classifications missing '{key}'")

    if len(cls["classes"]) != len(cls["scores"]):
        raise ValueError(" classes and scores length mismatch")

    return True



def validate_model_output(predictions_dict):
    """
    Validates entire output returned by SpeciesNet before visualization.
    """

    if "predictions" not in predictions_dict:
        raise ValueError(" Output missing top-level 'predictions' key")

    if not isinstance(predictions_dict["predictions"], list):
        raise ValueError(" 'predictions' must be a list")

    print(f" Total prediction entries: {len(predictions_dict['predictions'])}")

    # Validate each prediction block
    for i, pred in enumerate(predictions_dict["predictions"]):
        print(f"\n--- Checking prediction #{i+1} ---")
        validate_predictions_structure(pred)

    print("\n Output format validated successfully!\n")



# ------------------------------------------------------
#   VISUALIZATION
# ------------------------------------------------------
def draw_predictions(image_path, predictions_dict):

    img = cv2.imread(image_path)
    if img is None:
        raise ValueError(f"Could not load image: {image_path}")

    img_h, img_w, _ = img.shape

    for pred in predictions_dict.get("predictions", []):
        detections = pred.get("detections", [])
        classifications = pred.get("classifications", {})

        classes = classifications.get("classes", [])
        scores = classifications.get("scores", [])

        top_class_name = None
        top_score = None

        if len(classes) > 0:
            top_class_name = classes[0].split(";")[-1]
            top_score = scores[0]

        # SKIP NON-ANIMALS
        if len(classes) == 0:
            continue

        taxon = classes[0].lower()

        if not ("mammalia" in taxon or "aves" in taxon):
            continue

        for det in detections:
            bbox = det["bbox"]
            conf = det["conf"]
            label = det["label"]

            x, y, w, h = bbox
            x1 = int(x * img_w)
            y1 = int(y * img_h)
            x2 = int((x + w) * img_w)
            y2 = int((y + h) * img_h)

            cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 3)

            detection_text = f"{label} ({conf:.2f})"
            classification_text = (
                f"{top_class_name} ({top_score:.2f})" if top_class_name else ""
            )

            text_lines = []
            if classification_text:
                text_lines.append(classification_text)
            text_lines.append(detection_text)

            total_text_height = 0
            text_widths = []

            for line in text_lines:
                (text_w, text_h), _ = cv2.getTextSize(
                    line, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2
                )
                total_text_height += text_h + 5
                text_widths.append(text_w)

            max_text_width = max(text_widths)

            cv2.rectangle(
                img,
                (x1, max(y1 - total_text_height - 10, 0)),
                (x1 + max_text_width + 10, y1),
                (0, 255, 0),
                -1,
            )

            y_text = y1 - 5
            for line in text_lines[::-1]:
                cv2.putText(
                    img,
                    line,
                    (x1 + 5, y_text),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6,
                    (0, 0, 0),
                    2,
                    cv2.LINE_AA,
                )
                (_, text_h), _ = cv2.getTextSize(
                    line, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2
                )
                y_text -= text_h + 5

    return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)



# ------------------------------------------------------
#   INFERENCE FUNCTION 
# ------------------------------------------------------
def inference(image):

    filepath = "temp_image.jpg"
    image.save(filepath)

    start = time.time()
    predictions_dict = model.predict(
        instances_dict={
            "instances": [
                {
                    "filepath": filepath,
                    # "country": "VNM",
                }
            ]
        }
    )
    end = time.time()

    print(f"\n⏱ Inference Time: {end - start:.2f} sec")

    # --- Validate format ---
    validate_model_output(predictions_dict)

    # --- Save JSON ---
    with open("last_output.json", "w") as f:
        json.dump(predictions_dict, f, indent=4)

    print(" Saved JSON to last_output.json\n")

    # --- Draw Visualization  ---
    annotated_image = draw_predictions(filepath, predictions_dict)

    pretty_json = json.dumps(predictions_dict, indent=4)

    return annotated_image, pretty_json



# ------------------------------------------------------
#   GRADIO UI
# ------------------------------------------------------
iface = gr.Interface(
    fn=inference,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Image(label="Detection + Classification Output"),
        gr.JSON(label="Raw Model Output"),
    ],
    title=" SpeciesNet Wildlife Detector + Classifier",
    description="Upload a wildlife camera image.",
)

iface.launch()