codys12's picture
Update app.py
62d3ca7 verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
*NetCom β†’ WooCommerce CSV/Excel Processor*
Robust edition – catches and logs every recoverable error so one failure never
brings the whole pipeline down. Only small, surgical changes were made.
"""
import gradio as gr
import pandas as pd
import tempfile
import os, sys, json, re, hashlib, asyncio, aiohttp, traceback
from io import BytesIO
from pathlib import Path
from functools import lru_cache
import openai
import gradio_client.utils
# ────────────────────────────── HELPERS ──────────────────────────────
def _log(err: Exception, msg: str = ""):
"""Log errors without stopping execution."""
print(f"[WARN] {msg}: {err}", file=sys.stderr)
traceback.print_exception(err)
# Patch: tolerate bad JSON-schemas produced by some OpenAI tools
_original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def _fixed_json_schema_to_python_type(schema, defs=None):
try:
if isinstance(schema, bool):
return "any"
return _original_json_schema_to_python_type(schema, defs)
except Exception as e: # last-chance fallback
_log(e, "json_schema_to_python_type failed")
return "any"
gradio_client.utils._json_schema_to_python_type = _fixed_json_schema_to_python_type
# ────────────────────────────── DISK CACHE ──────────────────────────────
CACHE_DIR = Path("ai_response_cache"); CACHE_DIR.mkdir(exist_ok=True)
def _cache_path(prompt): # deterministic path
return CACHE_DIR / f"{hashlib.md5(prompt.encode()).hexdigest()}.json"
def get_cached_response(prompt):
try:
p = _cache_path(prompt)
if p.exists():
return json.loads(p.read_text(encoding="utf-8"))["response"]
except Exception as e:
_log(e, "reading cache")
return None
def cache_response(prompt, response):
try:
_cache_path(prompt).write_text(
json.dumps({"prompt": prompt, "response": response}), encoding="utf-8"
)
except Exception as e:
_log(e, "writing cache")
# ────────────────────────────── OPENAI ──────────────────────────────
async def _call_openai(client, prompt):
"""Single protected OpenAI call."""
try:
rsp = await client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0,
)
return rsp.choices[0].message.content
except Exception as e:
_log(e, "OpenAI error")
return f"Error: {e}"
async def process_text_batch_async(client, prompts):
"""Return results in original order, resilient to any error."""
results, tasks = {}, []
for p in prompts:
cached = get_cached_response(p)
if cached is not None:
results[p] = cached
else:
tasks.append(asyncio.create_task(_call_openai(client, p)))
for prompt, task in zip([p for p in prompts if p not in results], tasks):
try:
res = await task
except Exception as e:
_log(e, "async OpenAI task")
res = f"Error: {e}"
cache_response(prompt, res)
results[prompt] = res
return [results[p] for p in prompts]
async def process_text_with_ai_async(texts, instruction):
if not texts:
return []
client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
batch_size, out = 500, []
for i in range(0, len(texts), batch_size):
prompts = [f"{instruction}\n\nText: {t}" for t in texts[i : i + batch_size]]
out.extend(await process_text_batch_async(client, prompts))
return out
# ────────────────────────────── MAIN TRANSFORM ──────────────────────────────
def process_woocommerce_data_in_memory(upload):
"""Convert NetCom β†’ Woo CSV/XLSX; every stage guarded."""
try:
# brand β†’ logo mapping
brand_logo = {
"Amazon Web Services": "/wp-content/uploads/2025/04/aws.png",
"Cisco": "/wp-content/uploads/2025/04/cisco-e1738593292198-1.webp",
"Microsoft": "/wp-content/uploads/2025/04/Microsoft-e1737494120985-1.png",
"Google Cloud": "/wp-content/uploads/2025/04/Google_Cloud.png",
"EC Council": "/wp-content/uploads/2025/04/Ec_Council.png",
"ITIL": "/wp-content/uploads/2025/04/ITIL.webp",
"PMI": "/wp-content/uploads/2025/04/PMI.png",
"Comptia": "/wp-content/uploads/2025/04/Comptia.png",
"Autodesk": "/wp-content/uploads/2025/04/autodesk.png",
"ISC2": "/wp-content/uploads/2025/04/ISC2.png",
"AICerts": "/wp-content/uploads/2025/04/aicerts-logo-1.png",
}
default_prereq = (
"No specific prerequisites are required for this course. "
"Basic computer literacy and familiarity with fundamental concepts in the "
"subject area are recommended for the best learning experience."
)
# ---------------- I/O ----------------
ext = Path(upload.name).suffix.lower()
try:
if ext in {".xlsx", ".xls"}:
try:
df = pd.read_excel(upload.name, sheet_name="Active Schedules")
except Exception as e:
_log(e, "Excel read failed (falling back to first sheet)")
df = pd.read_excel(upload.name, sheet_name=0)
else: # CSV
try:
df = pd.read_csv(upload.name, encoding="latin1")
except Exception as e:
_log(e, "CSV read failed (trying utf-8)")
df = pd.read_csv(upload.name, encoding="utf-8", errors="ignore")
except Exception as e:
_log(e, "file read totally failed")
raise
df.columns = df.columns.str.strip()
# --------- column harmonisation (new vs old formats) ----------
rename_map = {
"Decription": "Description",
"description": "Description",
"Objectives": "Objectives",
"objectives": "Objectives",
"RequiredPrerequisite": "Required Prerequisite",
"Required Pre-requisite": "Required Prerequisite",
"RequiredPre-requisite": "Required Prerequisite",
}
df.rename(columns={k: v for k, v in rename_map.items() if k in df.columns}, inplace=True)
# duration if missing
if "Duration" not in df.columns:
try:
df["Duration"] = (
pd.to_datetime(df["Course End Date"]) - pd.to_datetime(df["Course Start Date"])
).dt.days.add(1)
except Exception as e:
_log(e, "duration calc failed")
df["Duration"] = ""
# ---------------- ASYNC AI ----------------
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
col_desc = "Description"
col_obj = "Objectives"
col_prereq = "Required Prerequisite"
try:
res = loop.run_until_complete(
asyncio.gather(
process_text_with_ai_async(
df[col_desc].fillna("").tolist(),
"Create a concise 250-character summary of this course description:",
),
process_text_with_ai_async(
df[col_desc].fillna("").tolist(),
"Condense this description to maximum 750 characters in paragraph format, with clean formatting:",
),
process_text_with_ai_async(
df[col_obj].fillna("").tolist(),
"Format these objectives into a bullet list format with clean formatting. Start each bullet with 'β€’ ':",
),
process_text_with_ai_async(
df["Outline"].fillna("").tolist(),
"Format this agenda into a bullet list format with clean formatting. Start each bullet with 'β€’ ':",
),
)
)
except Exception as e:
_log(e, "async AI gather failed")
res = [[""] * len(df)] * 4
finally:
loop.close()
short_desc, long_desc, objectives, agendas = res
# prerequisites handled synchronously (tiny)
prereq_out = []
for p in df[col_prereq].fillna("").tolist():
if not p.strip():
prereq_out.append(default_prereq)
else:
try:
prereq_out.append(
asyncio.run(
process_text_with_ai_async(
[p],
"Format these prerequisites into a bullet list format with clean formatting. Start each bullet with 'β€’ ':",
)
)[0]
)
except Exception as e:
_log(e, "prereq AI failed")
prereq_out.append(default_prereq)
# ---------------- DATAFRAME BUILD ----------------
try:
df["Short_Description"] = short_desc
df["Condensed_Description"] = long_desc
df["Formatted_Objectives"] = objectives
df["Formatted_Prerequisites"] = prereq_out
df["Formatted_Agenda"] = agendas
except Exception as e:
_log(e, "adding AI columns")
# 2. aggregate date/time
df = df.sort_values(["Course ID", "Course Start Date"])
date_agg = (
df.groupby("Course ID")["Course Start Date"]
.apply(lambda x: ",".join(x.astype(str).unique()))
.reset_index(name="Aggregated_Dates")
)
time_agg = (
df.groupby("Course ID")
.apply(
lambda d: ",".join(
f"{s}-{e} {tz}"
for s, e, tz in zip(
d["Course Start Time"], d["Course End Time"], d["Time Zone"]
)
)
)
.reset_index(name="Aggregated_Times")
)
parent = df.drop_duplicates(subset=["Course ID"]).merge(date_agg).merge(time_agg)
woo_parent_df = pd.DataFrame(
{
"Type": "variable",
"SKU": parent["Course ID"],
"Name": parent["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": parent["Short_Description"],
"Description": parent["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Regular price": parent["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": parent["Vendor"].map(brand_logo).fillna(""),
"Parent": "",
"Brands": parent["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": parent["Aggregated_Dates"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": parent["Aggregated_Times"],
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": parent["Formatted_Agenda"],
"Meta: days": parent["Duration"],
"Meta: location": "Virtual",
"Meta: overview": parent["Target Audience"],
"Meta: objectives": parent["Formatted_Objectives"],
"Meta: prerequisites": parent["Formatted_Prerequisites"],
"Meta: agenda": parent["Formatted_Agenda"],
}
)
woo_child_df = pd.DataFrame(
{
"Type": "variation, virtual",
"SKU": df["Course SID"],
"Name": df["Course Name"],
"Published": 1,
"Visibility in catalog": "visible",
"Short description": df["Short_Description"],
"Description": df["Condensed_Description"],
"Tax status": "taxable",
"In stock?": 1,
"Regular price": df["SRP Pricing"].replace("[\\$,]", "", regex=True),
"Categories": "courses",
"Images": df["Vendor"].map(brand_logo).fillna(""),
"Parent": df["Course ID"],
"Brands": df["Vendor"],
"Attribute 1 name": "Date",
"Attribute 1 value(s)": df["Course Start Date"],
"Attribute 1 visible": "visible",
"Attribute 1 global": 1,
"Attribute 2 name": "Location",
"Attribute 2 value(s)": "Virtual",
"Attribute 2 visible": "visible",
"Attribute 2 global": 1,
"Attribute 3 name": "Time",
"Attribute 3 value(s)": df.apply(
lambda r: f"{r['Course Start Time']}-{r['Course End Time']} {r['Time Zone']}",
axis=1,
),
"Attribute 3 visible": "visible",
"Attribute 3 global": 1,
"Meta: outline": df["Formatted_Agenda"],
"Meta: days": df["Duration"],
"Meta: location": "Virtual",
"Meta: overview": df["Target Audience"],
"Meta: objectives": df["Formatted_Objectives"],
"Meta: prerequisites": df["Formatted_Prerequisites"],
"Meta: agenda": df["Formatted_Agenda"],
}
)
final_cols = [
"Type",
"SKU",
"Name",
"Published",
"Visibility in catalog",
"Short description",
"Description",
"Tax status",
"In stock?",
"Regular price",
"Categories",
"Images",
"Parent",
"Brands",
"Attribute 1 name",
"Attribute 1 value(s)",
"Attribute 1 visible",
"Attribute 1 global",
"Attribute 2 name",
"Attribute 2 value(s)",
"Attribute 2 visible",
"Attribute 2 global",
"Attribute 3 name",
"Attribute 3 value(s)",
"Attribute 3 visible",
"Attribute 3 global",
"Meta: outline",
"Meta: days",
"Meta: location",
"Meta: overview",
"Meta: objectives",
"Meta: prerequisites",
"Meta: agenda",
]
woo_final_df = pd.concat([woo_parent_df, woo_child_df], ignore_index=True)[
final_cols
]
buf = BytesIO()
woo_final_df.to_csv(buf, index=False, encoding="utf-8-sig")
buf.seek(0)
return buf
except Exception as e:
_log(e, "fatal transformation error")
err_buf = BytesIO()
pd.DataFrame({"error": [str(e)]}).to_csv(err_buf, index=False)
err_buf.seek(0)
return err_buf
# ────────────────────────────── GRADIO BINDINGS ──────────────────────────────
def process_file(file):
try:
out_io = process_woocommerce_data_in_memory(file)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
tmp.write(out_io.getvalue())
return tmp.name
except Exception as e:
_log(e, "top-level process_file")
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as tmp:
tmp.write(f"Processing failed:\n{e}".encode())
return tmp.name
interface = gr.Interface(
fn=process_file,
inputs=gr.File(label="Upload NetCom Schedule", file_types=[".csv", ".xlsx", ".xls"]),
outputs=gr.File(label="Download WooCommerce CSV"),
title="NetCom β†’ WooCommerce CSV/Excel Processor",
description="Upload a NetCom Reseller Schedule CSV or XLSX to generate a WooCommerce-ready CSV.",
analytics_enabled=False,
)
if __name__ == "__main__": # run
if not os.getenv("OPENAI_API_KEY"):
print("[WARN] OPENAI_API_KEY not set; AI steps will error out.")
interface.launch()