Spaces:
Running
Running
Commit
·
df1c0da
1
Parent(s):
580c413
first commit
Browse files- app.py +227 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import random
|
5 |
+
import subprocess
|
6 |
+
import soundfile as sf
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import sherpa_onnx
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
sample_rate = 16000
|
14 |
+
|
15 |
+
|
16 |
+
def _get_nn_model_filename(
|
17 |
+
repo_id: str,
|
18 |
+
filename: str,
|
19 |
+
subfolder: str = "exp",
|
20 |
+
) -> str:
|
21 |
+
nn_model_filename = hf_hub_download(
|
22 |
+
repo_id=repo_id,
|
23 |
+
filename=filename,
|
24 |
+
subfolder=subfolder,
|
25 |
+
)
|
26 |
+
return nn_model_filename
|
27 |
+
|
28 |
+
|
29 |
+
def get_vad() -> sherpa_onnx.VoiceActivityDetector:
|
30 |
+
vad_model = _get_nn_model_filename(
|
31 |
+
repo_id="csukuangfj/vad",
|
32 |
+
filename="silero_vad.onnx",
|
33 |
+
subfolder=".",
|
34 |
+
)
|
35 |
+
|
36 |
+
config = sherpa_onnx.VadModelConfig()
|
37 |
+
config.silero_vad.model = vad_model
|
38 |
+
config.silero_vad.threshold = 0.5
|
39 |
+
config.silero_vad.min_silence_duration = 0.1
|
40 |
+
config.silero_vad.min_speech_duration = 0.25
|
41 |
+
config.sample_rate = sample_rate
|
42 |
+
config.silero_vad.max_speech_duration = 20 # seconds
|
43 |
+
|
44 |
+
vad = sherpa_onnx.VoiceActivityDetector(
|
45 |
+
config,
|
46 |
+
buffer_size_in_seconds=180,
|
47 |
+
)
|
48 |
+
|
49 |
+
return vad
|
50 |
+
|
51 |
+
|
52 |
+
def build_html_output(s: str, style: str = "result_item_success"):
|
53 |
+
return f"""
|
54 |
+
<div class='result'>
|
55 |
+
<div class='result_item {style}'>
|
56 |
+
{s}
|
57 |
+
</div>
|
58 |
+
</div>
|
59 |
+
"""
|
60 |
+
|
61 |
+
|
62 |
+
def process_uploaded_audio_file(
|
63 |
+
in_filename: str,
|
64 |
+
):
|
65 |
+
logging.warning(f"Processing audio {in_filename}")
|
66 |
+
if in_filename is None or in_filename == "":
|
67 |
+
return (
|
68 |
+
"",
|
69 |
+
build_html_output(
|
70 |
+
"Please first upload a file and then click " 'the button "Submit"',
|
71 |
+
"result_item_error",
|
72 |
+
),
|
73 |
+
"",
|
74 |
+
"",
|
75 |
+
)
|
76 |
+
|
77 |
+
return process_file(in_filename)
|
78 |
+
|
79 |
+
|
80 |
+
def process_uploaded_video_file(
|
81 |
+
in_filename: str,
|
82 |
+
):
|
83 |
+
logging.warning(f"Processing video {in_filename}")
|
84 |
+
if in_filename is None or in_filename == "":
|
85 |
+
return (
|
86 |
+
"",
|
87 |
+
build_html_output(
|
88 |
+
"Please first upload a file and then click " 'the button "Submit"',
|
89 |
+
"result_item_error",
|
90 |
+
),
|
91 |
+
"",
|
92 |
+
"",
|
93 |
+
)
|
94 |
+
|
95 |
+
logging.warning(f"Processing uploaded video file: {in_filename}")
|
96 |
+
|
97 |
+
return process_file(in_filename)
|
98 |
+
|
99 |
+
|
100 |
+
def process_file(filename: str):
|
101 |
+
vad = get_vad()
|
102 |
+
|
103 |
+
ffmpeg_cmd = [
|
104 |
+
"ffmpeg",
|
105 |
+
"-i",
|
106 |
+
filename,
|
107 |
+
"-f",
|
108 |
+
"s16le",
|
109 |
+
"-acodec",
|
110 |
+
"pcm_s16le",
|
111 |
+
"-ac",
|
112 |
+
"1",
|
113 |
+
"-ar",
|
114 |
+
str(sample_rate),
|
115 |
+
"-",
|
116 |
+
]
|
117 |
+
|
118 |
+
process = subprocess.Popen(
|
119 |
+
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
|
120 |
+
)
|
121 |
+
|
122 |
+
frames_per_read = int(sample_rate * 100) # 100 second
|
123 |
+
|
124 |
+
window_size = 512
|
125 |
+
|
126 |
+
buffer = []
|
127 |
+
all_samples = []
|
128 |
+
is_last = False
|
129 |
+
|
130 |
+
while True:
|
131 |
+
# *2 because int16_t has two bytes
|
132 |
+
data = process.stdout.read(frames_per_read * 2)
|
133 |
+
if not data:
|
134 |
+
if is_last:
|
135 |
+
break
|
136 |
+
is_last = True
|
137 |
+
data = np.zeros(sample_rate, dtype=np.int16)
|
138 |
+
|
139 |
+
samples = np.frombuffer(data, dtype=np.int16)
|
140 |
+
samples = samples.astype(np.float32) / 32768
|
141 |
+
buffer = np.concatenate([buffer, samples])
|
142 |
+
|
143 |
+
while len(buffer) > window_size:
|
144 |
+
vad.accept_waveform(buffer[:window_size])
|
145 |
+
buffer = buffer[window_size:]
|
146 |
+
|
147 |
+
if is_last:
|
148 |
+
vad.flush()
|
149 |
+
|
150 |
+
while not vad.empty():
|
151 |
+
all_samples.extend(vad.front.samples)
|
152 |
+
vad.pop()
|
153 |
+
suffix = random.randint(1000, 10000)
|
154 |
+
out_filename = f"{filename}-{suffix}.wav"
|
155 |
+
|
156 |
+
speech_samples = np.array(all_samples, dtype=np.float32)
|
157 |
+
sf.write(out_filename, speech_samples, samplerate=sample_rate)
|
158 |
+
|
159 |
+
return (
|
160 |
+
out_filename,
|
161 |
+
build_html_output(
|
162 |
+
"Done! Please download the generated .wav file", "result_item_success"
|
163 |
+
),
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
css = """
|
168 |
+
.result {display:flex;flex-direction:column}
|
169 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
170 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
171 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
172 |
+
"""
|
173 |
+
|
174 |
+
demo = gr.Blocks(css=css)
|
175 |
+
|
176 |
+
with demo:
|
177 |
+
gr.Markdown("Remove non-speeches")
|
178 |
+
with gr.Tabs():
|
179 |
+
with gr.TabItem("Upload audio from disk (音频)"):
|
180 |
+
uploaded_audio_file = gr.Audio(
|
181 |
+
sources=["upload"], # Choose between "microphone", "upload"
|
182 |
+
type="filepath",
|
183 |
+
label="Upload audio from disk",
|
184 |
+
)
|
185 |
+
upload_audio_button = gr.Button("Submit")
|
186 |
+
|
187 |
+
output_audio = gr.Audio(label="Output")
|
188 |
+
output_info_audio = gr.HTML(label="Info")
|
189 |
+
|
190 |
+
with gr.TabItem("Upload video from disk (视频)"):
|
191 |
+
uploaded_video_file = gr.Video(
|
192 |
+
sources=["upload"],
|
193 |
+
label="Upload from disk",
|
194 |
+
show_share_button=True,
|
195 |
+
)
|
196 |
+
upload_video_button = gr.Button("Submit")
|
197 |
+
|
198 |
+
output_video = gr.Video(label="Output")
|
199 |
+
output_info_video = gr.HTML(label="Info")
|
200 |
+
|
201 |
+
upload_video_button.click(
|
202 |
+
process_uploaded_video_file,
|
203 |
+
inputs=[
|
204 |
+
uploaded_video_file,
|
205 |
+
],
|
206 |
+
outputs=[
|
207 |
+
output_video,
|
208 |
+
output_info_video,
|
209 |
+
],
|
210 |
+
)
|
211 |
+
|
212 |
+
upload_audio_button.click(
|
213 |
+
process_uploaded_audio_file,
|
214 |
+
inputs=[
|
215 |
+
uploaded_audio_file,
|
216 |
+
],
|
217 |
+
outputs=[
|
218 |
+
output_audio,
|
219 |
+
output_info_audio,
|
220 |
+
],
|
221 |
+
)
|
222 |
+
|
223 |
+
if __name__ == "__main__":
|
224 |
+
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
225 |
+
|
226 |
+
logging.basicConfig(format=formatter, level=logging.WARNING)
|
227 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
sherpa-onnx>=1.11.4
|
2 |
+
ffmpeg-python
|
3 |
+
soundfile
|