|
import gradio as gr |
|
import os |
|
import sys |
|
from gradio_app.config import setup_logging, setup_sys_path |
|
from gradio_app.processor import gradio_process, update_preview, update_visibility, clear_preview_data |
|
|
|
|
|
setup_logging() |
|
setup_sys_path() |
|
|
|
|
|
custom_css = open(os.path.join(os.path.dirname(__file__), "gradio_app", "static", "styles.css"), "r").read() |
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) |
|
|
|
|
|
model_dir = os.path.join("ckpts", "yolo", "finetune", "runs", "license_plate_detector", "weights") |
|
model_files = [f for f in os.listdir(model_dir) if os.path.isfile(os.path.join(model_dir, f))] |
|
model_files = [os.path.join(model_dir, f) for f in model_files] |
|
default_model = next((element for element in model_files if "best" in element and element.endswith('.onnx')), None) |
|
|
|
|
|
examples = [ |
|
{ |
|
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image.jpg"), |
|
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image_output.jpg"), |
|
"input_type": "Image", |
|
"model_path": os.path.join(model_dir, "best.pt") if os.path.exists(os.path.join(model_dir, "best.pt")) else None |
|
}, |
|
{ |
|
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video.mp4"), |
|
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video_output.mp4"), |
|
"input_type": "Video", |
|
"model_path": os.path.join(model_dir, "best.pt") if os.path.exists(os.path.join(model_dir, "best.pt")) else None |
|
} |
|
] |
|
|
|
|
|
def load_example(evt: gr.SelectData): |
|
index = evt.index[0] if evt.index else 0 |
|
example = examples[index] |
|
input_file = example["input_file"] |
|
output_file = example["output_file"] |
|
input_type = example["input_type"] |
|
model_path = example["model_path"] |
|
|
|
|
|
input_preview_image, input_preview_video, output_image, output_video = update_visibility(input_type) |
|
|
|
|
|
input_preview_image, input_preview_video = update_preview(input_file, input_type) |
|
|
|
return ( |
|
input_file, |
|
input_type, |
|
input_preview_image, |
|
input_preview_video, |
|
output_file if input_type == "Image" else None, |
|
output_file if input_type == "Video" else None, |
|
model_path, |
|
"Example loaded - click Submit to process" |
|
) |
|
|
|
|
|
with gr.Blocks(css=custom_css) as iface: |
|
gr.Markdown( |
|
""" |
|
# License Plate Detection and OCR |
|
Detect license plates from images or videos and read their text using |
|
advanced computer vision and OCR for accurate identification. |
|
""", |
|
elem_classes="markdown-title" |
|
) |
|
gr.HTML(""" |
|
You can explore the source code and contribute to the project on |
|
<a href="https://github.com/danhtran2mind/License-Plate-Detector-OCR">danhtran2mind/License-Plate-Detector-OCR</a>. |
|
You can explore the HuggingFace Model Hub on |
|
<a href="https://huggingface.co/danhtran2mind/license-plate-detector-ocr">danhtran2mind/license-plate-detector-ocr</a>. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
input_file = gr.File(label="Upload Image or Video", elem_classes="custom-file-input") |
|
input_type = gr.Radio(choices=["Image", "Video"], label="Input Type", value="Image", elem_classes="custom-radio") |
|
model_path = gr.Dropdown(choices=model_files, label="Select Model", value=default_model, elem_classes="custom-dropdown") |
|
with gr.Blocks(): |
|
input_preview_image = gr.Image(label="Input Preview", visible=True, elem_classes="custom-image") |
|
input_preview_video = gr.Video(label="Input Preview", visible=False, elem_classes="custom-video") |
|
with gr.Row(): |
|
clear_button = gr.Button("Clear", variant="secondary", elem_classes="custom-button secondary") |
|
submit_button = gr.Button("Submit", variant="primary", elem_classes="custom-button primary") |
|
with gr.Column(scale=1): |
|
with gr.Blocks(): |
|
output_image = gr.Image(label="Processed Output (Image)", type="numpy", visible=True, elem_classes="custom-image") |
|
output_video = gr.Video(label="Processed Output (Video)", visible=False, elem_classes="custom-video") |
|
output_text = gr.Textbox(label="Detected License Plates", lines=10, elem_classes="custom-textbox") |
|
|
|
|
|
input_type.change( |
|
fn=update_visibility, |
|
inputs=input_type, |
|
outputs=[input_preview_image, input_preview_video, output_image, output_video] |
|
) |
|
|
|
|
|
input_file.change( |
|
fn=update_preview, |
|
inputs=[input_file, input_type], |
|
outputs=[input_preview_image, input_preview_video] |
|
) |
|
|
|
|
|
submit_button.click( |
|
fn=gradio_process, |
|
inputs=[model_path, input_file, input_type], |
|
outputs=[output_image, output_video, output_text, input_preview_image, input_preview_video] |
|
) |
|
|
|
|
|
clear_button.click( |
|
fn=lambda: (None, None, None, "Image", None, None, None, default_model), |
|
outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_text, model_path] |
|
).then( |
|
fn=clear_preview_data, |
|
inputs=None, |
|
outputs=None |
|
) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown("### Examples") |
|
|
|
with gr.Row(): |
|
example_table = gr.Dataframe( |
|
value=[[i, ex["input_type"], os.path.basename(ex["input_file"]), os.path.basename(ex["model_path"])] for i, ex in enumerate(examples)], |
|
headers=["Index", "Type", "File", "Model"], |
|
datatype=["number", "str", "str", "str"], |
|
interactive=True, |
|
elem_classes="custom-table" |
|
) |
|
with gr.Row(): |
|
gr.Markdown(""" |
|
This project utilizes: |
|
|
|
- **Detection task**: YOLOv12 architecture model (YOLO12n) from [](https://github.com/sunsmarterjie/yolov12) and documentation at [](https://docs.ultralytics.com/models/yolo12/), powered by the Ultralytics platform: [](https://docs.ultralytics.com). |
|
|
|
- **OCR task**: PaddleOCR v2.9 from [](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.9), with the main repository at [](https://github.com/PaddlePaddle/PaddleOCR) for OCR inference. Explore more about PaddleOCR at [](https://www.paddleocr.ai/main/en/index.html). |
|
""") |
|
|
|
example_table.select( |
|
fn=load_example, |
|
inputs=None, |
|
outputs=[input_file, input_type, input_preview_image, input_preview_video, output_image, output_video, model_path, output_text] |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |