Create gradio_app.py
Browse files- apps/gradio_app.py +153 -0
apps/gradio_app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from gradio_app.config import setup_logging, setup_sys_path
|
4 |
+
from gradio_app.processor import gradio_process, update_preview, update_visibility, clear_preview_data
|
5 |
+
|
6 |
+
# Initialize logging and sys.path
|
7 |
+
setup_logging()
|
8 |
+
setup_sys_path()
|
9 |
+
|
10 |
+
# Load custom CSS
|
11 |
+
custom_css = open(os.path.join(os.path.dirname(__file__), "gradio_app", "static", "styles.css"), "r").read()
|
12 |
+
|
13 |
+
# Define model directory and get available models
|
14 |
+
model_dir = os.path.join(os.path.dirname(__file__), "yolo", "finetune", "runs", "license_plate_detector", "weights")
|
15 |
+
model_files = [f for f in os.listdir(model_dir) if os.path.isfile(os.path.join(model_dir, f)) and f.endswith('.onnx')]
|
16 |
+
default_model = next((element for element in model_files if "best" in element), None)
|
17 |
+
|
18 |
+
# Define example files
|
19 |
+
examples = [
|
20 |
+
{
|
21 |
+
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image.jpg"),
|
22 |
+
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "1", "lp_image_output.jpg"),
|
23 |
+
"input_type": "Image",
|
24 |
+
"model_path": os.path.join(model_dir, "best.pt") if os.path.exists(os.path.join(model_dir, "best.pt")) else None
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"input_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video.mp4"),
|
28 |
+
"output_file": os.path.join(os.path.dirname(__file__), "gradio_app", "assets", "examples", "license_plate_detector_ocr", "2", "lp_video_output.mp4"),
|
29 |
+
"input_type": "Video",
|
30 |
+
"model_path": os.path.join(model_dir, "best.pt") if os.path.exists(os.path.join(model_dir, "best.pt")) else None
|
31 |
+
}
|
32 |
+
]
|
33 |
+
|
34 |
+
# Function to handle example selection
|
35 |
+
def load_example(evt: gr.SelectData):
|
36 |
+
index = evt.index[0] if evt.index else 0
|
37 |
+
example = examples[index]
|
38 |
+
input_file = example["input_file"]
|
39 |
+
output_file = example["output_file"]
|
40 |
+
input_type = example["input_type"]
|
41 |
+
model_path = example["model_path"]
|
42 |
+
|
43 |
+
# Update visibility based on input type
|
44 |
+
input_preview_image, input_preview_video, output_image, output_video = update_visibility(input_type)
|
45 |
+
|
46 |
+
# Update preview based on input file and type
|
47 |
+
input_preview_image, input_preview_video = update_preview(input_file, input_type)
|
48 |
+
|
49 |
+
return (
|
50 |
+
input_file,
|
51 |
+
input_type,
|
52 |
+
input_preview_image,
|
53 |
+
input_preview_video,
|
54 |
+
output_file if input_type == "Image" else None,
|
55 |
+
output_file if input_type == "Video" else None,
|
56 |
+
model_path,
|
57 |
+
"Example loaded - click Submit to process"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Gradio Interface
|
61 |
+
with gr.Blocks(css=custom_css) as iface:
|
62 |
+
gr.Markdown(
|
63 |
+
"""
|
64 |
+
# License Plate Detection and OCR
|
65 |
+
Detect license plates from images or videos and read their text using
|
66 |
+
advanced computer vision and OCR for accurate identification.
|
67 |
+
""",
|
68 |
+
elem_classes="markdown-title"
|
69 |
+
)
|
70 |
+
gr.HTML("""
|
71 |
+
You can explore the source code and contribute to the project on
|
72 |
+
<a href="https://github.com/danhtran2mind/License-Plate-Detector-OCR">danhtran2mind/License-Plate-Detector-OCR</a>.
|
73 |
+
You can explore the HuggingFace Model Hub on
|
74 |
+
<a href="https://huggingface.co/danhtran2mind/license-plate-detector-ocr">danhtran2mind/license-plate-detector-ocr</a>.
|
75 |
+
""")
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column(scale=1):
|
79 |
+
input_file = gr.File(label="Upload Image or Video", elem_classes="custom-file-input")
|
80 |
+
input_type = gr.Radio(choices=["Image", "Video"], label="Input Type", value="Image", elem_classes="custom-radio")
|
81 |
+
model_path = gr.Dropdown(choices=model_files, label="Select Model", value=default_model, elem_classes="custom-dropdown")
|
82 |
+
with gr.Blocks():
|
83 |
+
input_preview_image = gr.Image(label="Input Preview", visible=True, elem_classes="custom-image")
|
84 |
+
input_preview_video = gr.Video(label="Input Preview", visible=False, elem_classes="custom-video")
|
85 |
+
with gr.Row():
|
86 |
+
clear_button = gr.Button("Clear", variant="secondary", elem_classes="custom-button secondary")
|
87 |
+
submit_button = gr.Button("Submit", variant="primary", elem_classes="custom-button primary")
|
88 |
+
with gr.Column(scale=1):
|
89 |
+
with gr.Blocks():
|
90 |
+
output_image = gr.Image(label="Processed Output (Image)", type="numpy", visible=True, elem_classes="custom-image")
|
91 |
+
output_video = gr.Video(label="Processed Output (Video)", visible=False, elem_classes="custom-video")
|
92 |
+
output_text = gr.Textbox(label="Detected License Plates", lines=10, elem_classes="custom-textbox")
|
93 |
+
|
94 |
+
# Update preview and output visibility when input type changes
|
95 |
+
input_type.change(
|
96 |
+
fn=update_visibility,
|
97 |
+
inputs=input_type,
|
98 |
+
outputs=[input_preview_image, input_preview_video, output_image, output_video]
|
99 |
+
)
|
100 |
+
|
101 |
+
# Update preview when file is uploaded
|
102 |
+
input_file.change(
|
103 |
+
fn=update_preview,
|
104 |
+
inputs=[input_file, input_type],
|
105 |
+
outputs=[input_preview_image, input_preview_video]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Bind the processing function
|
109 |
+
submit_button.click(
|
110 |
+
fn=gradio_process,
|
111 |
+
inputs=[model_path, input_file, input_type],
|
112 |
+
outputs=[output_image, output_video, output_text, input_preview_image, input_preview_video]
|
113 |
+
)
|
114 |
+
|
115 |
+
# Clear button functionality
|
116 |
+
clear_button.click(
|
117 |
+
fn=lambda: (None, None, None, "Image", None, None, None, default_model),
|
118 |
+
outputs=[input_file, output_image, output_video, input_type, input_preview_image, input_preview_video, output_text, model_path]
|
119 |
+
).then(
|
120 |
+
fn=clear_preview_data,
|
121 |
+
inputs=None,
|
122 |
+
outputs=None
|
123 |
+
)
|
124 |
+
|
125 |
+
# Examples table
|
126 |
+
with gr.Row():
|
127 |
+
gr.Markdown("### Examples")
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
example_table = gr.Dataframe(
|
131 |
+
value=[[i, ex["input_type"], os.path.basename(ex["input_file"]), os.path.basename(ex["model_path"])] for i, ex in enumerate(examples)],
|
132 |
+
headers=["Index", "Type", "File", "Model"],
|
133 |
+
datatype=["number", "str", "str", "str"],
|
134 |
+
interactive=True,
|
135 |
+
elem_classes="custom-table"
|
136 |
+
)
|
137 |
+
with gr.Row():
|
138 |
+
gr.Markdown("""
|
139 |
+
This project utilizes:
|
140 |
+
|
141 |
+
- **Detection task**: YOLOv12 architecture model (YOLO12n) from [](https://github.com/sunsmarterjie/yolov12) and documentation at [](https://docs.ultralytics.com/models/yolo12/), powered by the Ultralytics platform: [](https://docs.ultralytics.com).
|
142 |
+
|
143 |
+
- **OCR task**: PaddleOCR v2.9 from [](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.9), with the main repository at [](https://github.com/PaddlePaddle/PaddleOCR) for OCR inference. Explore more about PaddleOCR at [](https://www.paddleocr.ai/main/en/index.html).
|
144 |
+
""")
|
145 |
+
# Example table click handler
|
146 |
+
example_table.select(
|
147 |
+
fn=load_example,
|
148 |
+
inputs=None,
|
149 |
+
outputs=[input_file, input_type, input_preview_image, input_preview_video, output_image, output_video, model_path, output_text]
|
150 |
+
)
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
iface.launch()
|