gemma-3-270m / app.py
daniel-dona's picture
Update app.py
6e3133c verified
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "daniel-dona/gemma-3-270m-it"
#pipe = pipeline("text-generation", model=model, device="cuda")
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
print("Got:", message)
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
"""response = pipe(
messages,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
return_full_text=False,
)
generated_text = response[0]['generated_text']
yield generated_text"""
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
sample = True
if temperature == 0:
sample = False
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_tokens,
do_sample=sample,
top_p=top_p,
temperature=temperature
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
return content
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()