Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import gradio as gr
|
4 |
+
from langchain.chat_models import ChatOpenAI
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
|
11 |
+
# Carrega variáveis de ambiente
|
12 |
+
load_dotenv()
|
13 |
+
api_key = os.getenv("OPENROUTER_API_KEY")
|
14 |
+
|
15 |
+
# Inicializa LLM
|
16 |
+
llm = ChatOpenAI(
|
17 |
+
openai_api_base="https://openrouter.ai/api/v1",
|
18 |
+
openai_api_key=api_key,
|
19 |
+
model="deepseek/deepseek-r1-zero:free"
|
20 |
+
)
|
21 |
+
|
22 |
+
def processar_pdf(pdf_file, pergunta):
|
23 |
+
# Usa diretamente o caminho fornecido pelo Gradio
|
24 |
+
pdf_path = pdf_file.name
|
25 |
+
|
26 |
+
# Carrega e divide o PDF
|
27 |
+
loader = PyPDFLoader(pdf_path)
|
28 |
+
documents = loader.load()
|
29 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
30 |
+
docs = splitter.split_documents(documents)
|
31 |
+
|
32 |
+
# Embeddings e índice
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
34 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
35 |
+
|
36 |
+
# Cadeia QA
|
37 |
+
qa_chain = RetrievalQA.from_chain_type(
|
38 |
+
llm=llm,
|
39 |
+
retriever=vectorstore.as_retriever(),
|
40 |
+
return_source_documents=True
|
41 |
+
)
|
42 |
+
|
43 |
+
# Resposta
|
44 |
+
resposta = qa_chain.invoke({"query": pergunta})
|
45 |
+
result = resposta["result"]
|
46 |
+
fontes = "\n\n".join([f"Fonte {i+1}: {doc.page_content[:300]}..." for i, doc in enumerate(resposta["source_documents"])])
|
47 |
+
return result, fontes
|
48 |
+
|
49 |
+
# Interface Gradio
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=processar_pdf,
|
52 |
+
inputs=[
|
53 |
+
gr.File(label="Envie um PDF"),
|
54 |
+
gr.Textbox(label="Sua pergunta", placeholder="Ex: Qual a duração do curso?")
|
55 |
+
],
|
56 |
+
outputs=[
|
57 |
+
gr.Textbox(label="Resposta"),
|
58 |
+
gr.Textbox(label="Fontes utilizadas")
|
59 |
+
],
|
60 |
+
title="Chat com PDF (LangChain)",
|
61 |
+
description="Carregue um PDF e faça perguntas sobre ele. Powered by LangChain + Hugging Face Embeddings"
|
62 |
+
)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
interface.launch()
|