darthPanda commited on
Commit
a0504e0
1 Parent(s): 33a1e6c

Commit message

Browse files
Files changed (4) hide show
  1. Dockerfile +16 -0
  2. Makefile +8 -0
  3. app.ipynb +245 -0
  4. requirements.txt +8 -0
Dockerfile ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+ RUN python3 -m pip install --no-cache-dir --upgrade pip
7
+ RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["panel", "serve", "/code/LangChain_QA_Panel_App.ipynb", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "sophiamyang-panel-pdf-qa.hf.space", "--allow-websocket-origin", "0.0.0.0:7860"]
12
+
13
+ RUN mkdir /.cache
14
+ RUN chmod 777 /.cache
15
+ RUN mkdir .chroma
16
+ RUN chmod 777 .chroma
Makefile ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ .PHONY: commit push
2
+
3
+ commit:
4
+ git add .
5
+ git commit -m "Commit message"
6
+
7
+ push: commit
8
+ git push
app.ipynb ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os \n",
10
+ "from langchain.chains import RetrievalQA\n",
11
+ "from langchain.llms import OpenAI\n",
12
+ "from langchain.document_loaders import TextLoader\n",
13
+ "from langchain.document_loaders import PyPDFLoader\n",
14
+ "from langchain.indexes import VectorstoreIndexCreator\n",
15
+ "from langchain.text_splitter import CharacterTextSplitter\n",
16
+ "from langchain.embeddings import OpenAIEmbeddings\n",
17
+ "from langchain.vectorstores import Chroma\n",
18
+ "import panel as pn\n",
19
+ "import tempfile"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 2,
25
+ "metadata": {},
26
+ "outputs": [
27
+ {
28
+ "data": {
29
+ "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'Quill': 'https://cdn.quilljs.com/1.3.6/quill', 'gridstack': 'https://cdn.jsdelivr.net/npm/[email protected]/dist/gridstack-h5', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'gridstack': {'exports': 'GridStack'}}});\n require([\"Quill\"], function(Quill) {\n\twindow.Quill = Quill\n\ton_load()\n })\n require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n })\n require([\"notyf\"], function() {\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 3;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n } if (((window['Quill'] !== undefined) && (!(window['Quill'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/gridstack/[email protected]/dist/gridstack-h5.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\", \"https://unpkg.com/@holoviz/[email protected]/dist/panel.min.js\"];\n var js_modules = [];\n var css_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.bubble.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.snow.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/card.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/json.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/debugger.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/loading.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/widgets.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/markdown.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/alerts.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/dataframe.css\"];\n var inline_js = [ function(Bokeh) {\n inject_raw_css(\"\\n .bk.pn-loading.arc:before {\\n background-image: url(\\\"\\\");\\n background-size: auto calc(min(50%, 400px));\\n }\\n \");\n }, function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, js_modules, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));",
30
+ "application/vnd.holoviews_load.v0+json": ""
31
+ },
32
+ "metadata": {},
33
+ "output_type": "display_data"
34
+ },
35
+ {
36
+ "data": {
37
+ "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n",
38
+ "application/vnd.holoviews_load.v0+json": ""
39
+ },
40
+ "metadata": {},
41
+ "output_type": "display_data"
42
+ },
43
+ {
44
+ "data": {
45
+ "text/html": [
46
+ "<style>.bk-root, .bk-root .bk:before, .bk-root .bk:after {\n",
47
+ " font-family: var(--jp-ui-font-size1);\n",
48
+ " font-size: var(--jp-ui-font-size1);\n",
49
+ " color: var(--jp-ui-font-color1);\n",
50
+ "}\n",
51
+ "</style>"
52
+ ]
53
+ },
54
+ "metadata": {},
55
+ "output_type": "display_data"
56
+ }
57
+ ],
58
+ "source": [
59
+ "pn.extension('texteditor', template=\"bootstrap\", sizing_mode='stretch_width')\n",
60
+ "pn.state.template.param.update(\n",
61
+ " main_max_width=\"690px\",\n",
62
+ " header_background=\"#F08080\",\n",
63
+ ")"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": 3,
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "file_input = pn.widgets.FileInput(width=300)\n",
73
+ "\n",
74
+ "openaikey = pn.widgets.PasswordInput(\n",
75
+ " value=\"\", placeholder=\"Enter your OpenAI API Key here...\", width=300\n",
76
+ ")\n",
77
+ "prompt = pn.widgets.TextEditor(\n",
78
+ " value=\"\", placeholder=\"Enter your questions here...\", height=160, toolbar=False\n",
79
+ ")\n",
80
+ "run_button = pn.widgets.Button(name=\"Run!\")\n",
81
+ "\n",
82
+ "select_k = pn.widgets.IntSlider(\n",
83
+ " name=\"Number of relevant chunks\", start=1, end=5, step=1, value=2\n",
84
+ ")\n",
85
+ "select_chain_type = pn.widgets.RadioButtonGroup(\n",
86
+ " name='Chain type', \n",
87
+ " options=['stuff', 'map_reduce', \"refine\", \"map_rerank\"]\n",
88
+ ")\n",
89
+ "\n",
90
+ "widgets = pn.Row(\n",
91
+ " pn.Column(prompt, run_button, margin=5),\n",
92
+ " pn.Card(\n",
93
+ " \"Chain type:\",\n",
94
+ " pn.Column(select_chain_type, select_k),\n",
95
+ " title=\"Advanced settings\", margin=10\n",
96
+ " ), width=600\n",
97
+ ")"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": 4,
103
+ "metadata": {},
104
+ "outputs": [],
105
+ "source": [
106
+ "def qa(file, query, chain_type, k):\n",
107
+ " # load document\n",
108
+ " loader = PyPDFLoader(file)\n",
109
+ " documents = loader.load()\n",
110
+ " # split the documents into chunks\n",
111
+ " text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
112
+ " texts = text_splitter.split_documents(documents)\n",
113
+ " # select which embeddings we want to use\n",
114
+ " embeddings = OpenAIEmbeddings()\n",
115
+ " # create the vectorestore to use as the index\n",
116
+ " db = Chroma.from_documents(texts, embeddings)\n",
117
+ " # expose this index in a retriever interface\n",
118
+ " retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n",
119
+ " # create a chain to answer questions \n",
120
+ " qa = RetrievalQA.from_chain_type(\n",
121
+ " llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)\n",
122
+ " result = qa({\"query\": query})\n",
123
+ " print(result['result'])\n",
124
+ " return result"
125
+ ]
126
+ },
127
+ {
128
+ "cell_type": "code",
129
+ "execution_count": 5,
130
+ "metadata": {},
131
+ "outputs": [],
132
+ "source": [
133
+ "convos = [] # store all panel objects in a list\n",
134
+ "\n",
135
+ "def qa_result(_):\n",
136
+ " os.environ[\"OPENAI_API_KEY\"] = openaikey.value\n",
137
+ " \n",
138
+ " # save pdf file to a temp file \n",
139
+ " if file_input.value is not None:\n",
140
+ " file_input.save(\"/.cache/temp.pdf\")\n",
141
+ " \n",
142
+ " prompt_text = prompt.value\n",
143
+ " if prompt_text:\n",
144
+ " result = qa(file=\"/.cache/temp.pdf\", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)\n",
145
+ " convos.extend([\n",
146
+ " pn.Row(\n",
147
+ " pn.panel(\"\\U0001F60A\", width=10),\n",
148
+ " prompt_text,\n",
149
+ " width=600\n",
150
+ " ),\n",
151
+ " pn.Row(\n",
152
+ " pn.panel(\"\\U0001F916\", width=10),\n",
153
+ " pn.Column(\n",
154
+ " result[\"result\"],\n",
155
+ " \"Relevant source text:\",\n",
156
+ " pn.pane.Markdown('\\n--------------------------------------------------------------------\\n'.join(doc.page_content for doc in result[\"source_documents\"]))\n",
157
+ " )\n",
158
+ " )\n",
159
+ " ])\n",
160
+ " #return convos\n",
161
+ " return pn.Column(*convos, margin=15, width=575, min_height=400)"
162
+ ]
163
+ },
164
+ {
165
+ "cell_type": "code",
166
+ "execution_count": 6,
167
+ "metadata": {},
168
+ "outputs": [],
169
+ "source": [
170
+ "qa_interactive = pn.panel(\n",
171
+ " pn.bind(qa_result, run_button),\n",
172
+ " loading_indicator=True,\n",
173
+ ")"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 7,
179
+ "metadata": {},
180
+ "outputs": [],
181
+ "source": [
182
+ "output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True)"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": 9,
188
+ "metadata": {},
189
+ "outputs": [
190
+ {
191
+ "data": {
192
+ "application/vnd.jupyter.widget-view+json": {
193
+ "model_id": "d572f1a081e741cbaca0638d4d0a860e",
194
+ "version_major": 2,
195
+ "version_minor": 0
196
+ },
197
+ "text/plain": [
198
+ "BokehModel(combine_events=True, render_bundle={'docs_json': {'c482f79e-56ca-4f46-b90f-25b4af3de8df': {'defs': …"
199
+ ]
200
+ },
201
+ "execution_count": 9,
202
+ "metadata": {},
203
+ "output_type": "execute_result"
204
+ }
205
+ ],
206
+ "source": [
207
+ "# layout\n",
208
+ "pn.Column(\n",
209
+ " pn.pane.Markdown(\"\"\"\n",
210
+ " ## \\U0001F60A! Question Answering with your PDF file\n",
211
+ " \n",
212
+ " 1) Upload a PDF. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click \"Run\".\n",
213
+ " \n",
214
+ " \"\"\"),\n",
215
+ " pn.Row(file_input,openaikey),\n",
216
+ " output,\n",
217
+ " widgets\n",
218
+ "\n",
219
+ ").servable()"
220
+ ]
221
+ }
222
+ ],
223
+ "metadata": {
224
+ "kernelspec": {
225
+ "display_name": "env1",
226
+ "language": "python",
227
+ "name": "python3"
228
+ },
229
+ "language_info": {
230
+ "codemirror_mode": {
231
+ "name": "ipython",
232
+ "version": 3
233
+ },
234
+ "file_extension": ".py",
235
+ "mimetype": "text/x-python",
236
+ "name": "python",
237
+ "nbconvert_exporter": "python",
238
+ "pygments_lexer": "ipython3",
239
+ "version": "3.9.13"
240
+ },
241
+ "orig_nbformat": 4
242
+ },
243
+ "nbformat": 4,
244
+ "nbformat_minor": 2
245
+ }
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ openai
3
+ chromadb
4
+ pypdf
5
+ tiktoken
6
+ panel
7
+ notebook
8
+ jupyter_bokeh