OCR_App / utils.py
youl's picture
update
82aaf28 verified
import os
from google.cloud import vision
import re
import torch
import torchvision
import numpy as np
from PIL import Image
import albumentations as A
from albumentations.pytorch import ToTensorV2
import tempfile
import json
def getcredentials():
secret_key_credential = os.getenv("secret_key")
with tempfile.NamedTemporaryFile(mode='w+', delete= False, suffix=".json") as temp_file:
temp_file.write(secret_key_credential)
tempfile_name = temp_file.name
return tempfile_name
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = getcredentials()
##
def info_new_cni(donnees):
##
informations = {}
# Utilisation d'expressions régulières pour extraire les informations spécifiques
numero_carte = re.search(r'n° (C\d+)', ' '.join(donnees))
#prenom_nom = re.search(r'Prénom\(s\)\s+(.*?)\s+Nom\s+(.*?)\s+Signature', ' '.join(donnees))
nom = re.search(r'Nom\s+(.*?)\s', ' '.join(donnees))
prenom = re.search(r'Prénom\(s\)\s+(.*?)\s+Nom\s+(.*?)', ' '.join(donnees))
date_naissance = re.search(r'Date de Naissance\s+(.*?)+(\d{2}/\d{2}/\d{4})', ' '.join(donnees))
lieu_naissance = re.search(r'Lieu de Naissance\s+(.*?)\s', ' '.join(donnees))
taille = re.search(r'Sexe Taille\s+(.*?)+(\d+,\d+)', ' '.join(donnees))
nationalite = re.search(r'Nationalité\s+(.*?)\s+\d+', ' '.join(donnees))
date_expiration = re.search(r'Date d\'expiration\s+(\d+/\d+/\d+)', ' '.join(donnees))
sexe = re.search(r'Date de Naissance\s+(.*?)+(\d{2}/\d{2}/\d{4})+(.*)', ' '.join(donnees))
# Stockage des informations extraites dans un dictionnaire
if numero_carte:
informations['Numéro de carte'] = numero_carte.group(1)
if nom :
informations['Nom'] = nom.group(1)
if prenom:
informations['Prénom'] = prenom.group(1)
if date_naissance:
informations['Date de Naissance'] = date_naissance.group(2)
if lieu_naissance:
informations['Lieu de Naissance'] = lieu_naissance.group(1)
if taille:
informations['Taille'] = taille.group(2)
if nationalite:
informations['Nationalité'] = nationalite.group(1)
if date_expiration:
informations['Date d\'expiration'] = date_expiration.group(1)
if sexe :
informations['sexe'] = sexe.group(3)[:2]
return informations
##
def info_ancien_cni(infos):
""" Extract information in row data of ocr"""
informations = {}
immatriculation_patern = r'Immatriculation:\s+(C \d{4} \d{4} \d{2})'
immatriculation = re.search(immatriculation_patern, ''.join(infos))
nom = infos[4]
prenom_pattern = r'Nom\n(.*?)\n'
prenom = re.search(prenom_pattern, '\n'.join(infos))
sexe_pattern = r'Prénoms\n(.*?)\n'
sexe = re.search(sexe_pattern, '\n'.join(infos))
taille_pattern = r'Sexe\n(.*?)\n'
taille = re.search(taille_pattern, '\n'.join(infos))
date_naiss_pattern = r'Taille\s+(.*?)+(\d+/\d+/\d+)' # r'Taille (m)\n(.*?)\n'
date_naissance = re.search(date_naiss_pattern, ' '.join(infos))
lieu_pattern = r'Date de Naissance\n(.*?)\n'
lieu_naissance = re.search(lieu_pattern, '\n'.join(infos))
valide_pattern = r'Valide jusqu\'au+(.*?)+(\d+/\d+/\d+)'
validite = re.search(valide_pattern, ' '.join(infos))
# Stockage des informations extraites dans un dictionnaire
if immatriculation:
informations['Immatriculation'] = immatriculation.group(1)
if nom :
informations['Nom'] = infos[4]
if prenom:
informations['Prénom'] = prenom.group(1)
if date_naissance:
informations['Date de Naissance'] = date_naissance.group(2)
if lieu_naissance:
informations['Lieu de Naissance'] = lieu_naissance.group(1)
if taille:
informations['Taille'] = taille.group(1)
if validite:
informations['Date d\'expiration'] = validite.group(2)
if sexe :
informations['sexe'] = sexe.group(1)
return informations
##
def filtrer_elements(liste):
elements_filtres = []
for element in liste:
if element not in ['\r',"RÉPUBLIQUE DE CÔTE D'IVOIRE", "MINISTÈRE DES TRANSPORTS", "PERMIS DE CONDUIRE"]:
elements_filtres.append(element)
return elements_filtres
def permis_de_conduite(donnees):
""" Extraire les information de permis de conduire"""
informations = {}
infos = filtrer_elements(donnees)
nom_pattern = r'Nom\n(.*?)\n'
nom = re.search(nom_pattern, '\n'.join(infos))
prenom_pattern = r'Prénoms\n(.*?)\n'
prenom = re.search(prenom_pattern, '\n'.join(infos))
date_lieu_naissance_patern = r'Date et lieu de naissance\n(.*?)\n'
date_lieu_naissance = re.search(date_lieu_naissance_patern, '\n'.join(infos))
date_lieu_delivrance_patern = r'Date et lieu de délivrance\n(.*?)\n'
date_lieu_delivrance = re.search(date_lieu_delivrance_patern, '\n'.join(infos))
numero_pattern = r'Numéro du permis de conduire\n(.*?)\n'
numero = re.search(numero_pattern, '\n'.join(infos))
restriction_pattern = r'Restriction\(s\)\s+(.*?)+(.*)'
restriction = re.search(restriction_pattern, ' '.join(infos))
# Stockage des informations extraites dans un dictionnaire
if nom:
informations['Nom'] = nom.group(1)
if prenom :
informations['Prenoms'] = prenom.group(1)
if date_lieu_naissance :
informations['Date_et_lieu_de_naissance'] = date_lieu_naissance.group(1)
if date_lieu_naissance :
informations['Date_et_lieu_de_délivrance'] = date_lieu_delivrance.group(1)
informations['Categorie'] = infos[0]
if numero:
informations['Numéro_du_permis_de_conduire'] = numero.group(1)
if restriction:
informations['Restriction(s)'] = restriction.group(2)
return informations
# Fonction pour extraire les informations individuelles
def extraire_informations_carte(path, type_de_piece=1):
""" Detect text in identity card"""
client = vision.ImageAnnotatorClient()
with open(path,'rb') as image_file:
content = image_file.read()
image = vision.Image(content = content)
# for non dense text
#response = client.text_detection(image=image)
#for dense text
response = client.document_text_detection(image = image)
texts = response.text_annotations
ocr_texts = []
for text in texts:
ocr_texts.append(f"\r\n{text.description}")
if response.error.message :
raise Exception("{}\n For more informations check : https://cloud.google.com/apis/design/errors".format(response.error.message))
donnees = ocr_texts[0].split('\n')
if type_de_piece ==1:
return info_new_cni(donnees)
elif type_de_piece == 2:
return info_ancien_cni(donnees)
elif type_de_piece == 3:
return permis_de_conduite(donnees)
else :
return "Le traitement de ce type de document n'est pas encore pris en charge"
def load_checkpoint(path):
print('--> Loading checkpoint')
return torch.load(path,map_location=torch.device('cpu'))
def make_prediction(image_path):
# define the using of GPU or CPU et background training
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
## load model
model = load_checkpoint("data/model.pth")
## transformation
test_transforms = A.Compose([
A.Resize(height=224, width=224, always_apply=True),
A.Normalize(always_apply=True),
ToTensorV2(always_apply=True),])
## read the image
image = np.array(Image.open(image_path).convert('RGB'))
transformed = test_transforms(image= image)
image_transformed = transformed["image"]
image_transformed = image_transformed.unsqueeze(0)
image_transformed = image_transformed.to(device)
model.eval()
with torch.set_grad_enabled(False):
output = model(image_transformed)
# Post-process predictions
probabilities = torch.nn.functional.softmax(output[0], dim=0)
predicted_class = torch.argmax(probabilities).item()
proba = float(max(probabilities))
return proba, predicted_class