youl commited on
Commit
0159f8b
·
verified ·
1 Parent(s): f87648c

upload application

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from utils import extraire_informations_carte,make_prediction
4
+
5
+ def predict(img):
6
+ proba, document_type = make_prediction(img)
7
+ if proba < .98:
8
+ return "Ce document ne fait pas partir de ceux pris en charge actuelement (Nouvelle et Ancienne CNI, Permis de conduire)"
9
+ else :
10
+ doc_type = document_type +1
11
+ result = extraire_informations_carte(img,doc_type)
12
+ return result
13
+
14
+ image = gr.components.Image(type = "filepath")
15
+ #type_document = gr.components.Dropdown(["Nouvelle_CNI","ANCIENNE_CNI","PERMIS_DE_CONDUITE"])
16
+ out_lab = gr.components.Textbox()
17
+
18
+ ### 4. Gradio app ###
19
+ # Create title, description and article strings
20
+ title = "OCR FOR IMAGES ANALYSIS"
21
+ description = "WE USE OCR TO EXTRACT INFORMATIONS FROM DIFFERENT TYPES OF DOCUMENTS AND FORMALIZE THE RESULT INTO JSON."
22
+ article = "Created by data354."
23
+
24
+ # Create examples list from "examples/" directory
25
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
26
+ print(example_list)
27
+ #[gr.Label(label="Predictions"), # what are the outputs?
28
+ #gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
29
+ # Create examples list from "examples/" directory
30
+ # Create the Gradio demo
31
+ demo = gr.Interface(fn=predict, # mapping function from input to output
32
+ inputs= image, #gr.Image(type="pil"), # what are the inputs?
33
+ outputs=out_lab, #[list of outputs]
34
+ examples=example_list,
35
+ title=title,
36
+ description=description,
37
+ article=article
38
+ )
39
+ # Launch the demo!
40
+ demo.launch(debug = True)