import gradio as gr import os from utils import extraire_informations_carte,make_prediction def predict(img): proba, document_type = make_prediction(img) if proba < .98: return "Ce document ne fait pas partir de ceux pris en charge actuelement (Nouvelle et Ancienne CNI, Permis de conduire)" else : doc_type = document_type +1 result = extraire_informations_carte(img,doc_type) return result image = gr.components.Image(type = "filepath") #type_document = gr.components.Dropdown(["Nouvelle_CNI","ANCIENNE_CNI","PERMIS_DE_CONDUITE"]) out_lab = gr.components.Textbox() ### 4. Gradio app ### # Create title, description and article strings title = "OCR FOR IMAGES ANALYSIS" description = "WE USE OCR TO EXTRACT INFORMATIONS FROM DIFFERENT TYPES OF DOCUMENTS AND FORMALIZE THE RESULT INTO JSON." article = "Created by data354." # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] print(example_list) #[gr.Label(label="Predictions"), # what are the outputs? #gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs= image, #gr.Image(type="pil"), # what are the inputs? outputs=out_lab, #[list of outputs] examples=example_list, title=title, description=description, article=article ) # Launch the demo! demo.launch(debug = True)