datasciencedojo's picture
Fix: AttributeError: 'Video' object has no attribute 'stream'
a98a90d verified
import cv2
import gradio as gr
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def process_frame(img):
if img is None:
return None
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
) as hands:
img.flags.writeable = False
image = cv2.flip(img[:, :, ::-1], 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
img.flags.writeable = True
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style()
)
return cv2.flip(image[:, :, ::-1], 1)
with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo:
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Webcam Input", format="mp4") # Video input for real-time processing
with gr.Column():
output_image = gr.Image(label="Output Image") # Processed image output
def update_frame(video):
frame = cv2.VideoCapture(video).read()[1] # Read the current frame
if frame is not None:
processed_frame = process_frame(frame)
return processed_frame
return None
video_input.change(
update_frame,
inputs=[video_input],
outputs=[output_image]
)
demo.launch(debug=True)