File size: 11,207 Bytes
8dd11f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import re
import requests
import json
from typing import Tuple, List

from omegaconf import OmegaConf

from typing import Optional
from pydantic import Field, BaseModel

from vectara_agentic.agent import Agent
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
from vectara_agentic.tools_catalog import summarize_text

from dotenv import load_dotenv
load_dotenv(override=True)

citation_description = '''
    The citation for a particular case. 
    Citation must include the volume number, reporter, and first page. For example: 253 P.2d 136.
'''

def extract_components_from_citation(citation: str) -> Tuple[int, str, int]:
    citation_components = citation.split(' ')
    volume_num = citation_components[0]
    reporter = '-'.join(citation_components[1:-1]).replace('.', '').lower()
    first_page = citation_components[-1]

    if not volume_num.isdigit():
        raise ValueError("volume number must be a number.")
    if not first_page.isdigit():
        raise ValueError("first page number must be a number.")

    return int(volume_num), reporter, int(first_page)

def create_assistant_tools(cfg):

    def get_opinion_text(
            case_citation = Field(description = citation_description),
            summarize: Optional[bool] = False
            ) -> str:
        """
        Given case citation, returns the full opinion/ruling text of the case.
        if summarize is True, the text is summarized.
        If there is more than one opinion for the case, the type of each opinion is returned with the text, 
        and the opinions (or their summaries) are separated by semicolons (;)
        """
        volume_num, reporter, first_page = extract_components_from_citation(case_citation)
        response = requests.get(f"https://static.case.law/{reporter}/{volume_num}/cases/{first_page:04d}-01.json")
        if response.status_code != 200:
            return "Case not found; please check the citation."
        res = json.loads(response.text)

        if len(res["casebody"]["opinions"]) == 1:
            text = res["casebody"]["opinions"][0]["text"]
            output = text if not summarize else summarize_text(text, "law")
        else:
            output = ""
            for opinion in res["casebody"]["opinions"]:
                text = opinion["text"] if not summarize else summarize_text(opinion["text"], "law")
                output += f"Opinion type: {opinion['type']}, text: {text};"
        
        return output

    def get_case_document_pdf(
            case_citation = Field(description = citation_description)
            ) -> str:
        """
        Given a case citation, returns a valid web url to a pdf of the case record
        """
        volume_num, reporter, first_page = extract_components_from_citation(case_citation)
        response = requests.get(f"https://static.case.law/{reporter}/{volume_num}/cases/{first_page:04d}-01.json")
        if response.status_code != 200:
            return "Case not found; please check the citation."
        res = json.loads(response.text)
        page_number = res["first_page_order"]
        return f"https://static.case.law/{reporter}/{volume_num}.pdf#page={page_number}"

    def get_case_document_page(
            case_citation = Field(description = citation_description)
            ) -> str:
        """
        Given a case citation, returns a valid web url to a page with information about the case.
        """
        volume_num, reporter, first_page = extract_components_from_citation(case_citation)
        url = f"https://case.law/caselaw/?reporter={reporter}&volume={volume_num}&case={first_page:04d}-01"
        response = requests.get(url)
        if response.status_code != 200:
            return "Case not found; please check the citation."
        return url
        
    def get_case_name(
            case_citation = Field(description = citation_description)
            ) -> Tuple[str, str]:
        """
        Given a case citation, returns its name and name abbreviation.
        """
        volume_num, reporter, first_page = extract_components_from_citation(case_citation)
        response = requests.get(f"https://static.case.law/{reporter}/{volume_num}/cases/{first_page:04d}-01.json")
        if response.status_code != 200:
            return "Case not found", "Case not found"
        res = json.loads(response.text)
        return res["name"], res["name_abbreviation"]

    def get_cited_cases(
            case_citation = Field(description = citation_description)
            ) -> List[dict]:
        """
        Given a case citation, returns a list of cases that are cited by the opinion of this case.
        The output is a list of cases, each a dict with the citation, name and name_abbreviation of the case.
        """
        volume_num, reporter, first_page = extract_components_from_citation(case_citation)
        response = requests.get(f"https://static.case.law/{reporter}/{volume_num}/cases/{first_page:04d}-01.json")
        if response.status_code != 200:
            return "Case not found; please check the citation."
        res = json.loads(response.text)
        citations = res["cites_to"]
        res = []
        for citation in citations[:10]:
            name, name_abbreviation = get_case_name(citation["cite"])
            res.append({
                "citation": citation["cite"],
                "name": name,
                "name_abbreviation": name_abbreviation
            })
        return res

    def validate_url(
            url = Field(description = "A web url pointing to case-law document")
        ) -> str:
        """
        Given a link, returns whether or not the link is valid.
        If it is not valid, it should not be used in any output.
        """  
        pdf_pattern = re.compile(r'^https://static.case.law/.*')
        document_pattern = re.compile(r'^https://case.law/caselaw/?reporter=.*')
        return "URL is valid" if bool(pdf_pattern.match(url)) | bool(document_pattern.match(url)) else "URL is bad"

    class QueryCaselawArgs(BaseModel):
        query: str = Field(..., description="The user query.")
        citations: Optional[str] = Field(default = None, 
                                         description = "The citation of the case. Optional.", 
                                         examples = ['253 P.2d 136', '10 Alaska 11', '6 C.M.A. 3'])

    vec_factory = VectaraToolFactory(vectara_api_key=cfg.api_key, 
                                     vectara_customer_id=cfg.customer_id, 
                                     vectara_corpus_id=cfg.corpus_id)
    tools_factory = ToolsFactory()

    ask_caselaw = vec_factory.create_rag_tool(
        tool_name = "ask_caselaw",
        tool_description = """
        Returns a response (str) to the user query base on case law in the state of Alaska.
        If 'citations' is provided, filters the response based on information from that case.
        The response includes metadata about the case such as title/name the ruling, the court, 
        the decision date, the judges, and the case citation. 
        You can use case citations from the metadata as input to other tools.
        Use this tool for general case law queries.
        """,
        tool_args_schema = QueryCaselawArgs,
        reranker = "multilingual_reranker_v1", rerank_k = 100, 
        n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.0,
        summary_num_results = 10,
        vectara_summarizer = 'vectara-summary-ext-24-05-med-omni',
        include_citations = False,
    )

    return (
        [tools_factory.create_tool(tool) for tool in [
            get_opinion_text,
            get_case_document_pdf,
            get_case_document_page,
            get_cited_cases,
            get_case_name,
            validate_url
        ]] + 
        tools_factory.standard_tools() + 
        tools_factory.legal_tools() + 
        tools_factory.guardrail_tools() +
        [ask_caselaw]
    )

def get_agent_config() -> OmegaConf:
    cfg = OmegaConf.create({
        'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
        'corpus_id': str(os.environ['VECTARA_CORPUS_ID']),
        'api_key': str(os.environ['VECTARA_API_KEY']),
        'examples': os.environ.get('QUERY_EXAMPLES', None),
        'demo_name': str(os.environ['DEMO_NAME']),
        'short_description': str(os.environ['SHORT_DESCRIPTION']),
        'extra_info': str(os.environ['EXTRA_INFO'])
    })
    return cfg

def initialize_agent(_cfg, update_func=None):
    
    legal_assistant_instructions = """
    - You are a helpful legal assistant, with expertise in case law for the state of Alaska.
    - The ask_caselaw tool is your primary tools for finding information about cases. 
      Do not use your own knowledge to answer questions.
    - For a query with multiple sub-questions, break down the query into the sub-questions, 
      and make separate calls to the ask_caselaw tool to answer each sub-question,
      then combine the answers to provide a complete response.
    - If the ask_caselaw tool responds that it does not have enough information to answer the query,
      try to rephrase the query and call the tool again.
    - When presenting the output from ask_caselaw tool,
      Extract metadata from the tool's response, and respond in this format:
      'On <decision date>, the <court> ruled in <case name> that <judges ruling>. This opinion was authored by <judges>'.
    - Citations include 3 components: volume number, reporter, and first page. 
      Here are some examples: '253 P.2d 136', '10 Alaska 11', '6 C.M.A. 3'
      Never use your internal knowledge to contruct or guess what the citation is.
    - If two cases have conflicting rulings, assume that the case with the more current ruling date is correct.
    - If the response is based on cases that are older than 5 years, make sure to inform the user that the information may be outdated,
      since some case opinions may no longer apply in law.
    - To summarize the case, use the get_opinion_text with summarize set to True.
    - If a user wants to learn more about a case, you can call the get_case_document_pdf tool with the citation to get a valid URL.
      If this is unsuccessful, call the get_case_document_page tool instead. 
      The text displayed with this URL should be the name_abbreviation of the case (DON'T just say the info can be found here).
      Don't call the get_case_document_page tool until after you have tried the get_case_document_pdf tool.
      Don't provide URLs from any other tools. Do not generate URLs yourself.
    - When presenting a URL in your response, use the validate_url tool.
    - If a user wants to test their argument, use the ask_caselaw tool to gather information about cases related to their argument 
      and the critique_as_judge tool to determine whether their argument is sound or has issues that must be corrected.
    - Never discuss politics, and always respond politely.
    """

    agent = Agent(
        tools=create_assistant_tools(_cfg),
        topic="Case law in Alaska",
        custom_instructions=legal_assistant_instructions,
        update_func=update_func
    )

    return agent