Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import requests
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
import os
|
| 7 |
+
import datetime
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
API_TOKEN = os.getenv("API_TOKEN")
|
| 12 |
+
DECODEM_TOKEN=os.getenv("DECODEM_TOKEN")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from huggingface_hub import InferenceApi
|
| 16 |
+
inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
|
| 17 |
+
|
| 18 |
+
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
|
| 19 |
+
url_decodemprompts='https://us-central1-createinsightsproject.cloudfunctions.net/getdecodemprompts'
|
| 20 |
+
|
| 21 |
+
data={"prompt_type":'market_size',"decodem_token":DECODEM_TOKEN}
|
| 22 |
+
try:
|
| 23 |
+
r = requests.post(url_decodemprompts, data=json.dumps(data), headers=headers)
|
| 24 |
+
except requests.exceptions.ReadTimeout as e:
|
| 25 |
+
print(e)
|
| 26 |
+
#print(r.content)
|
| 27 |
+
|
| 28 |
+
prompt=str(r.content, 'UTF-8')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def infer(prompt,
|
| 32 |
+
max_length = 250,
|
| 33 |
+
top_k = 0,
|
| 34 |
+
num_beams = 0,
|
| 35 |
+
no_repeat_ngram_size = 2,
|
| 36 |
+
top_p = 0.9,
|
| 37 |
+
seed=42,
|
| 38 |
+
temperature=0.7,
|
| 39 |
+
greedy_decoding = False,
|
| 40 |
+
return_full_text = False):
|
| 41 |
+
|
| 42 |
+
print(seed)
|
| 43 |
+
top_k = None if top_k == 0 else top_k
|
| 44 |
+
do_sample = False if num_beams > 0 else not greedy_decoding
|
| 45 |
+
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
|
| 46 |
+
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
|
| 47 |
+
top_p = None if num_beams else top_p
|
| 48 |
+
early_stopping = None if num_beams is None else num_beams > 0
|
| 49 |
+
|
| 50 |
+
params = {
|
| 51 |
+
"max_new_tokens": max_length,
|
| 52 |
+
"top_k": top_k,
|
| 53 |
+
"top_p": top_p,
|
| 54 |
+
"temperature": temperature,
|
| 55 |
+
"do_sample": do_sample,
|
| 56 |
+
"seed": seed,
|
| 57 |
+
"early_stopping":early_stopping,
|
| 58 |
+
"no_repeat_ngram_size":no_repeat_ngram_size,
|
| 59 |
+
"num_beams":num_beams,
|
| 60 |
+
"return_full_text":return_full_text
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
s = time.time()
|
| 64 |
+
response = inference(prompt, params=params)
|
| 65 |
+
#print(response)
|
| 66 |
+
proc_time = time.time()-s
|
| 67 |
+
#print(f"Processing time was {proc_time} seconds")
|
| 68 |
+
return response
|
| 69 |
+
|
| 70 |
+
def getideas(text_inp):
|
| 71 |
+
print(text_inp)
|
| 72 |
+
print(datetime.today().strftime("%d-%m-%Y"))
|
| 73 |
+
|
| 74 |
+
text = prompt+"\nInput:"+text_inp + "\nOutput:"
|
| 75 |
+
resp = infer(text,seed=random.randint(0,100))
|
| 76 |
+
|
| 77 |
+
generated_text=resp[0]['generated_text']
|
| 78 |
+
result = generated_text.replace(text,'').strip()
|
| 79 |
+
result = result.replace("Output:","")
|
| 80 |
+
parts = result.split("###")
|
| 81 |
+
topic = parts[0].strip()
|
| 82 |
+
topic="\n".join(topic.split('\n')[:3])
|
| 83 |
+
print(topic)
|
| 84 |
+
return(topic)
|
| 85 |
+
|
| 86 |
+
with gr.Blocks() as demo:
|
| 87 |
+
gr.Markdown("<h1><center>Market Sizing Framework for Your Business</center></h1>")
|
| 88 |
+
gr.Markdown(
|
| 89 |
+
"""ChatGPT based Insights from <a href="https://www.decodem.ai">Decodem.ai</a> for businesses.\nWhile ChatGPT has multiple use cases we have evolved specific use cases/ templates for businesses \n\n This template provides ideas on how a business can size a market they are entering. Enter a business area to size and get the results. Use examples as a guide. We use a equally powerful AI model bigscience/bloom."""
|
| 90 |
+
)
|
| 91 |
+
textbox = gr.Textbox(placeholder="Enter market size focus for business here...", lines=1,label='Your business area')
|
| 92 |
+
btn = gr.Button("Generate")
|
| 93 |
+
output1 = gr.Textbox(lines=2,label='The future')
|
| 94 |
+
|
| 95 |
+
btn.click(getideas,inputs=[textbox], outputs=[output1])
|
| 96 |
+
examples = gr.Examples(examples=['icecream parlor in London','HR saas for fintech','book shops in NYC','Starbucks cafe in Bangalore','organic vegetables via ecommerce','grocery delivery'],
|
| 97 |
+
inputs=[textbox])
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
demo.launch()
|