denoising / app.py
mterris's picture
rm stuff
250bf66
import random
import time
from functools import partial
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from torchvision import transforms
from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
### Config
# run model inference on NVIDIA gpu if available
DEVICE_STR = 'cuda' if torch.cuda.is_available() else 'cpu'
### Gradio Utils
def resize_tensor_within_box(tensor_img: torch.Tensor, max_size: int = 512):
_, _, h, w = tensor_img.shape
scale = min(max_size / h, max_size / w)
if scale < 1.0:
new_h, new_w = int(h * scale), int(w * scale)
tensor_img = transforms.functional.resize(tensor_img, [new_h, new_w], antialias=True)
return tensor_img
def generate_imgs_from_user(image,
physics: PhysicsWithGenerator, # use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
# Happens when user image is missing
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor / (1, C, H, W) / move to DEVICE_STR
x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)
# Resize img within a 512x512 box
x = resize_tensor_within_box(x)
C = x.shape[1]
if C == 3 and physics.name == 'CT':
x = transforms.Grayscale(num_output_channels=1)(x)
elif C == 3 and physics.name == 'MRI': # not working because MRI physics has a fixed img size
x = transforms.Grayscale(num_output_channels=1)(x)
x = torch.cat((x, torch.zeros_like(x)), dim=1)
return generate_imgs(x, physics, True, baseline, model, metrics)
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
physics: PhysicsWithGenerator, # use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (C, H, W)
x = x.unsqueeze(0) # shape : (1, C, H, W)
return generate_imgs(x, physics, True, baseline, model, metrics)
def generate_random_imgs_from_dataset(dataset: EvalDataset,
physics: PhysicsWithGenerator,
# use_gen: bool,
baseline: BaselineModel,
model: EvalModel,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, physics, baseline, model, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def generate_imgs(x: torch.Tensor,
physics: PhysicsWithGenerator, use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
print(f"[Before inference] CUDA current allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA current reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
if hasattr(physics.physics, 'tensor_size'):
physics.physics.tensor_size = x.shape[1:]
elif hasattr(physics.physics, 'imsize'):
physics.physics.imsize = x.shape[1:]
if physics.physics_generator is not None: # we only change physic params but not noise levels
if hasattr(physics.physics_generator, 'tensor_size'):
physics.physics_generator.tensor_size = x.shape[1:]
physics.generator.tensor_size = x.shape[1:]
if hasattr(physics.physics_generator, 'imsize'):
physics.physics_generator.imsize = x.shape[1:]
physics.generator.imsize = x.shape[1:]
### Compute y
with torch.no_grad():
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat from RAM & DPIR
ram_time = time.time()
with torch.no_grad():
out = model(y=y, physics=physics.physics)
ram_time = time.time() - ram_time
dpir_time = time.time()
with torch.no_grad():
out_baseline = baseline(y=y, physics=physics.physics)
dpir_time = time.time() - dpir_time
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Process y when y shape is different from x shape
if physics.name == 'MRI' or physics.name == 'CT':
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
#if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y_plot, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
metrics_out += f"Inference time = {ram_time:.3f}s"
metrics_out_baseline += f"Inference time = {dpir_time:.3f}s"
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x_pil = to_pil(process_img(x)[0].to('cpu'))
y_pil = to_pil(process_img(y_plot)[0].to('cpu'))
out_pil = to_pil(process_img(out)[0].to('cpu'))
out_baseline_pil = to_pil(process_img(out_baseline)[0].to('cpu'))
### Free memory
del x, y, out, out_baseline, y_plot
torch.cuda.empty_cache()
print(f"[After inference] CUDA current allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"[After inference] CUDA current reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
print(f"[After inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[After inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
return x_pil, y_pil, out_pil, out_baseline_pil, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
def get_dataset(dataset_name):
if dataset_name == 'MRI':
available_physics = ['MRI']
physics_name = 'MRI'
baseline_name = 'DPIR_MRI'
elif dataset_name == 'CT':
available_physics = ['CT']
physics_name = 'CT'
baseline_name = 'DPIR_CT'
else:
available_physics = ['Inpainting', 'SR' ,'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
physics_name = 'MotionBlur_hard'
baseline_name = 'DPIR'
dataset = get_dataset_on_DEVICE_STR(dataset_name)
idx = 0
physics = get_physics_on_DEVICE_STR(physics_name)
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
return dataset, idx, physics, baseline, available_physics
# global variables shared by all users
ram_model = EvalModel(device_str=DEVICE_STR)
ram_model.eval()
psnr = Metric.get_list_metrics(["PSNR"], device_str=DEVICE_STR)
generate_imgs_from_user_partial = partial(generate_imgs_from_user, model=ram_model, metrics=psnr)
generate_imgs_from_dataset_partial = partial(generate_imgs_from_dataset, model=ram_model, metrics=psnr)
generate_random_imgs_from_dataset_partial = partial(generate_random_imgs_from_dataset, model=ram_model, metrics=psnr)
### Gradio Blocks interface
print(f"[Init] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Init] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
title = "Reconstruct Anything Model Demo" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
gr.Markdown("## " + title)
gr.Markdown(
"""
This demo showcases the performance of the **Reconstruct Anything Model (RAM)** across a variety of inverse problems on both natural and MRI images.
Select a dataset and a physics task below (e.g., inpainting, super-resolution, deblurring...).
Note: The parameters of the selected physics β€” such as noise levels, blur kernels, or inpainting masks β€” are randomly generated before reconstruction, leveraging the [deepinverse library](https://deepinv.github.io/deepinv/).
πŸ“„ For more details on the method, check out our [paper on arXiv](https://arxiv.org/abs/2503.08915).
"""
)
### USER-SPECIFIC VARIABLES
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
available_physics_placeholder = gr.State(['Inpainting', 'SR', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'])
# Issue giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
# Solution: using lambda expression
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_hard"))
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
print(f"[Render] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Render] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
@gr.render(inputs=[dataset_placeholder, physics_placeholder, available_physics_placeholder],
triggers=[dataset_placeholder.change, physics_placeholder.change])
def dynamic_layout(dataset, physics, available_physics):
### LAYOUT
# Display images
with gr.Row():
gt_img = gr.Image(label="Ground-truth image", interactive=True, key='gt_img')
observed_img = gr.Image(label="Observed image", interactive=False, key='observed_img')
model_a_out = gr.Image(label="RAM output", interactive=False, key='ram_out')
model_b_out = gr.Image(label="DPIR output", interactive=False, key='dpir_out')
# Manage datasets and display metric values
with gr.Row():
with gr.Column(scale=1, min_width=160):
run_button = gr.Button("Demo on above image", size='md')
with gr.Row():
load_button = gr.Button("Run on index image from dataset", size='md')
load_random_button = gr.Button("Run on random image from dataset", size='md')
with gr.Column(scale=1, min_width=160):
observed_metrics = gr.Textbox(label="Observed metric", lines=2, key='metrics')
with gr.Column(scale=1, min_width=160):
out_a_metric = gr.Textbox(label="RAM output metrics", lines=2, key='ram_metrics')
with gr.Column(scale=1, min_width=160):
out_b_metric = gr.Textbox(label="DPIR output metrics", lines=2, key='dpir_metrics')
with gr.Row():
with gr.Column(scale=1):
choose_physics = gr.Radio(choices=available_physics,
label="Physics",
value=physics.name)
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="Datasets",
value=dataset.name)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset) - 1, step=1, label="Sample index",
key='idx_slider')
# with gr.Column(scale=1):
# with gr.Row():
# key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
# label="Updatable Key")
# value_text = gr.Textbox(label="Update Value")
# update_button = gr.Button("Manually update parameter value", size='md')
with gr.Column(scale=1):
physics_params = gr.Textbox(label="Physics parameters",
lines=5,
value=physics.display_saved_params())
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, idx_slider, physics_placeholder, model_b_placeholder, available_physics_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
# update_button.click(fn=physics.update_and_display_params,
# inputs=[key_selector, value_text], outputs=physics_params)
run_button.click(fn=generate_imgs_from_user_partial,
inputs=[gt_img,
physics_placeholder,
# use_generator_button,
model_b_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset_partial,
inputs=[dataset_placeholder,
idx_slider,
physics_placeholder,
# use_generator_button,
model_b_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset_partial,
inputs=[dataset_placeholder,
physics_placeholder,
# use_generator_button,
model_b_placeholder],
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
interface.launch()