Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- app.py +98 -3
- data/1.png +0 -0
- data/2.png +0 -0
- data/3.png +0 -0
- data/4.png +0 -0
- requirements.txt +6 -0
app.py
CHANGED
@@ -1,7 +1,102 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import random
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import torch
|
7 |
+
from transformers import SegformerForSemanticSegmentation
|
8 |
+
from transformers import SegformerImageProcessor
|
9 |
|
10 |
+
image_list = [
|
11 |
+
"data/1.png",
|
12 |
+
"data/2.png",
|
13 |
+
"data/3.png",
|
14 |
+
"data/4.png",
|
15 |
+
]
|
16 |
|
17 |
+
def visualize_instance_seg_mask(mask):
|
18 |
+
# Initialize image with zeros with the image resolution
|
19 |
+
# of the segmentation mask and 3 channels
|
20 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
21 |
|
22 |
+
# Create labels
|
23 |
+
labels = np.unique(mask)
|
24 |
+
label2color = {
|
25 |
+
label: (
|
26 |
+
random.randint(0, 255),
|
27 |
+
random.randint(0, 255),
|
28 |
+
random.randint(0, 255),
|
29 |
+
)
|
30 |
+
for label in labels
|
31 |
+
}
|
32 |
+
|
33 |
+
for height in range(image.shape[0]):
|
34 |
+
for width in range(image.shape[1]):
|
35 |
+
image[height, width, :] = label2color[mask[height, width]]
|
36 |
+
|
37 |
+
image = image / 255
|
38 |
+
return image
|
39 |
+
|
40 |
+
|
41 |
+
def Segformer_Segmentation(image_path, model_id):
|
42 |
+
output_save = "output.png"
|
43 |
+
|
44 |
+
test_image = Image.open(image_path)
|
45 |
+
|
46 |
+
model = SegformerForSemanticSegmentation.from_pretrained(model_id)
|
47 |
+
proccessor = SegformerImageProcessor(model_id)
|
48 |
+
|
49 |
+
inputs = proccessor(images=test_image, return_tensors="pt")
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = model(**inputs)
|
52 |
+
|
53 |
+
result = proccessor.post_process_semantic_segmentation(outputs)[0]
|
54 |
+
result = np.array(result)
|
55 |
+
result = visualize_instance_seg_mask(result)
|
56 |
+
plt.figure(figsize=(10, 10))
|
57 |
+
for plot_index in range(2):
|
58 |
+
if plot_index == 0:
|
59 |
+
plot_image = test_image
|
60 |
+
title = "Original"
|
61 |
+
else:
|
62 |
+
plot_image = result
|
63 |
+
title = "Segmentation"
|
64 |
+
|
65 |
+
plt.subplot(1, 2, plot_index+1)
|
66 |
+
plt.imshow(plot_image)
|
67 |
+
plt.title(title)
|
68 |
+
plt.axis("off")
|
69 |
+
plt.savefig(output_save)
|
70 |
+
|
71 |
+
return output_save
|
72 |
+
|
73 |
+
inputs = [
|
74 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
75 |
+
gr.inputs.Dropdown(
|
76 |
+
choices=[
|
77 |
+
"deprem-ml/deprem_satellite_semantic_whu"
|
78 |
+
],
|
79 |
+
label="Model ID",
|
80 |
+
default="deprem-ml/deprem_satellite_semantic_whu",
|
81 |
+
)
|
82 |
+
]
|
83 |
+
|
84 |
+
outputs = gr.Image(type="filepath", label="Segmentation")
|
85 |
+
|
86 |
+
examples = [[image_list[0], "deprem-ml/deprem_satellite_semantic_whu"],
|
87 |
+
[image_list[1], "deprem-ml/deprem_satellite_semantic_whu"],
|
88 |
+
[image_list[2], "deprem-ml/deprem_satellite_semantic_whu"],
|
89 |
+
[image_list[3], "deprem-ml/deprem_satellite_semantic_whu"]]
|
90 |
+
|
91 |
+
title = "Deprem ML - Segformer Semantic Segmentation"
|
92 |
+
|
93 |
+
demo_app = gr.Interface(
|
94 |
+
Segformer_Segmentation,
|
95 |
+
inputs,
|
96 |
+
outputs,
|
97 |
+
examples=examples,
|
98 |
+
title=title,
|
99 |
+
cache_examples=True
|
100 |
+
)
|
101 |
+
|
102 |
+
demo_app.launch(debug=True, enable_queue=True)
|
data/1.png
ADDED
data/2.png
ADDED
data/3.png
ADDED
data/4.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.18.0
|
2 |
+
matplotlib==3.6.2
|
3 |
+
numpy==1.24.2
|
4 |
+
Pillow==9.4.0
|
5 |
+
torch==1.12.1
|
6 |
+
transformers==4.26.0
|